File size: 12,691 Bytes
e30d598
 
8500830
 
e30d598
8500830
 
637d603
07c8cc6
8500830
e137bbe
e30d598
 
 
637d603
 
 
 
eb22a9a
396b5e1
 
4c93a0a
 
 
 
 
 
 
396b5e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c93a0a
396b5e1
 
07c8cc6
eb22a9a
5b3ad16
396b5e1
 
eb22a9a
396b5e1
eb22a9a
e30d598
07c8cc6
 
e30d598
 
3014b64
 
 
 
 
fa547b7
3014b64
 
 
 
 
55ce06e
 
3014b64
50489a6
3014b64
 
 
41b64ac
3014b64
efc0a3c
e30d598
 
41b64ac
 
fa547b7
3014b64
07c8cc6
3014b64
5b3ad16
07c8cc6
efc0a3c
00fc5a8
efc0a3c
 
 
00fc5a8
efc0a3c
 
 
3014b64
00fc5a8
efc0a3c
 
5b3ad16
3014b64
 
00fc5a8
07c8cc6
3014b64
e373be4
3014b64
 
e373be4
00fc5a8
7a584fd
50489a6
 
7a584fd
41b64ac
 
eb22a9a
41b64ac
 
 
eb22a9a
 
9715dfb
 
 
 
eb22a9a
 
 
41b64ac
e30d598
 
637d603
 
 
 
e30d598
 
 
 
12cfcfc
8500830
 
55ce06e
eb22a9a
 
581abcb
 
eb22a9a
 
8500830
 
 
 
55ce06e
8500830
 
 
e30d598
12cfcfc
00fc5a8
8500830
 
55ce06e
00fc5a8
 
 
 
 
 
 
 
 
 
8500830
e30d598
 
 
6c247ba
e137bbe
 
e30d598
 
8500830
 
 
 
 
 
 
e30d598
 
8500830
e30d598
8500830
 
 
e30d598
 
 
8500830
 
e30d598
 
 
 
8500830
e30d598
8500830
224ac55
e30d598
8500830
e30d598
41b64ac
 
 
 
 
 
8500830
e30d598
eb22a9a
 
581abcb
 
8500830
 
 
 
 
 
 
 
 
 
 
 
e373be4
 
8500830
 
 
 
 
e373be4
 
8500830
 
e30d598
00fc5a8
 
efc0a3c
00fc5a8
 
 
 
 
 
 
efc0a3c
3014b64
 
00fc5a8
efc0a3c
 
00fc5a8
efc0a3c
 
00fc5a8
e30d598
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import os
import cv2
import argparse
import glob
import torch
from torchvision.transforms.functional import normalize
from basicsr.utils import imwrite, img2tensor, tensor2img
from basicsr.utils.download_util import load_file_from_url
from basicsr.utils.misc import gpu_is_available, get_device
from facelib.utils.face_restoration_helper import FaceRestoreHelper
from facelib.utils.misc import is_gray

from basicsr.utils.registry import ARCH_REGISTRY

pretrain_model_url = {
    'restoration': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth',
}

def set_realesrgan():
    from basicsr.archs.rrdbnet_arch import RRDBNet
    from basicsr.utils.realesrgan_utils import RealESRGANer

    use_half = False
    if torch.cuda.is_available(): # set False in CPU/MPS mode
        no_half_gpu_list = ['1650', '1660'] # set False for GPUs that don't support f16
        if not True in [gpu in torch.cuda.get_device_name(0) for gpu in no_half_gpu_list]:
            use_half = True

    model = RRDBNet(
        num_in_ch=3,
        num_out_ch=3,
        num_feat=64,
        num_block=23,
        num_grow_ch=32,
        scale=2,
    )
    upsampler = RealESRGANer(
        scale=2,
        model_path="https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/RealESRGAN_x2plus.pth",
        model=model,
        tile=args.bg_tile,
        tile_pad=40,
        pre_pad=0,
        half=use_half
    )

    if not gpu_is_available():  # CPU
        import warnings
        warnings.warn('Running on CPU now! Make sure your PyTorch version matches your CUDA.'
                        'The unoptimized RealESRGAN is slow on CPU. '
                        'If you want to disable it, please remove `--bg_upsampler` and `--face_upsample` in command.',
                        category=RuntimeWarning)
    return upsampler

if __name__ == '__main__':
    # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    device = get_device()
    parser = argparse.ArgumentParser()

    parser.add_argument('-i', '--input_path', type=str, default='./inputs/whole_imgs', 
            help='Input image, video or folder. Default: inputs/whole_imgs')
    parser.add_argument('-o', '--output_path', type=str, default=None, 
            help='Output folder. Default: results/<input_name>_<w>')
    parser.add_argument('-w', '--fidelity_weight', type=float, default=0.5, 
            help='Balance the quality and fidelity. Default: 0.5')
    parser.add_argument('-s', '--upscale', type=int, default=2, 
            help='The final upsampling scale of the image. Default: 2')
    parser.add_argument('--has_aligned', action='store_true', help='Input are cropped and aligned faces. Default: False')
    parser.add_argument('--only_center_face', action='store_true', help='Only restore the center face. Default: False')
    parser.add_argument('--draw_box', action='store_true', help='Draw the bounding box for the detected faces. Default: False')
    # large det_model: 'YOLOv5l', 'retinaface_resnet50'
    # small det_model: 'YOLOv5n', 'retinaface_mobile0.25'
    parser.add_argument('--detection_model', type=str, default='retinaface_resnet50', 
            help='Face detector. Optional: retinaface_resnet50, retinaface_mobile0.25, YOLOv5l, YOLOv5n, dlib. \
                Default: retinaface_resnet50')
    parser.add_argument('--bg_upsampler', type=str, default='None', help='Background upsampler. Optional: realesrgan')
    parser.add_argument('--face_upsample', action='store_true', help='Face upsampler after enhancement. Default: False')
    parser.add_argument('--bg_tile', type=int, default=400, help='Tile size for background sampler. Default: 400')
    parser.add_argument('--suffix', type=str, default=None, help='Suffix of the restored faces. Default: None')
    parser.add_argument('--save_video_fps', type=float, default=None, help='Frame rate for saving video. Default: None')

    args = parser.parse_args()

    # ------------------------ input & output ------------------------
    w = args.fidelity_weight
    input_video = False
    if args.input_path.endswith(('jpg', 'jpeg', 'png', 'JPG', 'JPEG', 'PNG')): # input single img path
        input_img_list = [args.input_path]
        result_root = f'results/test_img_{w}'
    elif args.input_path.endswith(('mp4', 'mov', 'avi', 'MP4', 'MOV', 'AVI')): # input video path
        from basicsr.utils.video_util import VideoReader, VideoWriter
        input_img_list = []
        vidreader = VideoReader(args.input_path)
        image = vidreader.get_frame()
        while image is not None:
            input_img_list.append(image)
            image = vidreader.get_frame()
        audio = vidreader.get_audio()
        fps = vidreader.get_fps() if args.save_video_fps is None else args.save_video_fps   
        video_name = os.path.basename(args.input_path)[:-4]
        result_root = f'results/{video_name}_{w}'
        input_video = True
        vidreader.close()
    else: # input img folder
        if args.input_path.endswith('/'):  # solve when path ends with /
            args.input_path = args.input_path[:-1]
        # scan all the jpg and png images
        input_img_list = sorted(glob.glob(os.path.join(args.input_path, '*.[jpJP][pnPN]*[gG]')))
        result_root = f'results/{os.path.basename(args.input_path)}_{w}'

    if not args.output_path is None: # set output path
        result_root = args.output_path

    test_img_num = len(input_img_list)
    if test_img_num == 0:
        raise FileNotFoundError('No input image/video is found...\n' 
            '\tNote that --input_path for video should end with .mp4|.mov|.avi')

    # ------------------ set up background upsampler ------------------
    if args.bg_upsampler == 'realesrgan':
        bg_upsampler = set_realesrgan()
    else:
        bg_upsampler = None

    # ------------------ set up face upsampler ------------------
    if args.face_upsample:
        if bg_upsampler is not None:
            face_upsampler = bg_upsampler
        else:
            face_upsampler = set_realesrgan()
    else:
        face_upsampler = None

    # ------------------ set up CodeFormer restorer -------------------
    net = ARCH_REGISTRY.get('CodeFormer')(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9, 
                                            connect_list=['32', '64', '128', '256']).to(device)
    
    # ckpt_path = 'weights/CodeFormer/codeformer.pth'
    ckpt_path = load_file_from_url(url=pretrain_model_url['restoration'], 
                                    model_dir='weights/CodeFormer', progress=True, file_name=None)
    checkpoint = torch.load(ckpt_path)['params_ema']
    net.load_state_dict(checkpoint)
    net.eval()

    # ------------------ set up FaceRestoreHelper -------------------
    # large det_model: 'YOLOv5l', 'retinaface_resnet50'
    # small det_model: 'YOLOv5n', 'retinaface_mobile0.25'
    if not args.has_aligned: 
        print(f'Face detection model: {args.detection_model}')
    if bg_upsampler is not None: 
        print(f'Background upsampling: True, Face upsampling: {args.face_upsample}')
    else:
        print(f'Background upsampling: False, Face upsampling: {args.face_upsample}')

    face_helper = FaceRestoreHelper(
        args.upscale,
        face_size=512,
        crop_ratio=(1, 1),
        det_model = args.detection_model,
        save_ext='png',
        use_parse=True,
        device=device)

    # -------------------- start to processing ---------------------
    for i, img_path in enumerate(input_img_list):
        # clean all the intermediate results to process the next image
        face_helper.clean_all()
        
        if isinstance(img_path, str):
            img_name = os.path.basename(img_path)
            basename, ext = os.path.splitext(img_name)
            print(f'[{i+1}/{test_img_num}] Processing: {img_name}')
            img = cv2.imread(img_path, cv2.IMREAD_COLOR)
        else: # for video processing
            basename = str(i).zfill(6)
            img_name = f'{video_name}_{basename}' if input_video else basename
            print(f'[{i+1}/{test_img_num}] Processing: {img_name}')
            img = img_path

        if args.has_aligned: 
            # the input faces are already cropped and aligned
            img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
            face_helper.is_gray = is_gray(img, threshold=10)
            if face_helper.is_gray:
                print('Grayscale input: True')
            face_helper.cropped_faces = [img]
        else:
            face_helper.read_image(img)
            # get face landmarks for each face
            num_det_faces = face_helper.get_face_landmarks_5(
                only_center_face=args.only_center_face, resize=640, eye_dist_threshold=5)
            print(f'\tdetect {num_det_faces} faces')
            # align and warp each face
            face_helper.align_warp_face()

        # face restoration for each cropped face
        for idx, cropped_face in enumerate(face_helper.cropped_faces):
            # prepare data
            cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
            normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
            cropped_face_t = cropped_face_t.unsqueeze(0).to(device)

            try:
                with torch.no_grad():
                    output = net(cropped_face_t, w=w, adain=True)[0]
                    restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
                del output
                torch.cuda.empty_cache()
            except Exception as error:
                print(f'\tFailed inference for CodeFormer: {error}')
                restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1))

            restored_face = restored_face.astype('uint8')
            face_helper.add_restored_face(restored_face, cropped_face)

        # paste_back
        if not args.has_aligned:
            # upsample the background
            if bg_upsampler is not None:
                # Now only support RealESRGAN for upsampling background
                bg_img = bg_upsampler.enhance(img, outscale=args.upscale)[0]
            else:
                bg_img = None
            face_helper.get_inverse_affine(None)
            # paste each restored face to the input image
            if args.face_upsample and face_upsampler is not None: 
                restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=args.draw_box, face_upsampler=face_upsampler)
            else:
                restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=args.draw_box)

        # save faces
        for idx, (cropped_face, restored_face) in enumerate(zip(face_helper.cropped_faces, face_helper.restored_faces)):
            # save cropped face
            if not args.has_aligned: 
                save_crop_path = os.path.join(result_root, 'cropped_faces', f'{basename}_{idx:02d}.png')
                imwrite(cropped_face, save_crop_path)
            # save restored face
            if args.has_aligned:
                save_face_name = f'{basename}.png'
            else:
                save_face_name = f'{basename}_{idx:02d}.png'
            if args.suffix is not None:
                save_face_name = f'{save_face_name[:-4]}_{args.suffix}.png'
            save_restore_path = os.path.join(result_root, 'restored_faces', save_face_name)
            imwrite(restored_face, save_restore_path)

        # save restored img
        if not args.has_aligned and restored_img is not None:
            if args.suffix is not None:
                basename = f'{basename}_{args.suffix}'
            save_restore_path = os.path.join(result_root, 'final_results', f'{basename}.png')
            imwrite(restored_img, save_restore_path)

    # save enhanced video
    if input_video:
        print('Video Saving...')
        # load images
        video_frames = []
        img_list = sorted(glob.glob(os.path.join(result_root, 'final_results', '*.[jp][pn]g')))
        for img_path in img_list:
            img = cv2.imread(img_path)
            video_frames.append(img)
        # write images to video
        height, width = video_frames[0].shape[:2]
        if args.suffix is not None:
            video_name = f'{video_name}_{args.suffix}.png'
        save_restore_path = os.path.join(result_root, f'{video_name}.mp4')
        vidwriter = VideoWriter(save_restore_path, height, width, fps, audio)
         
        for f in video_frames:
            vidwriter.write_frame(f)
        vidwriter.close()

    print(f'\nAll results are saved in {result_root}')