File size: 5,039 Bytes
8312ddd e9a9c89 8312ddd e9a9c89 8312ddd e9a9c89 8312ddd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import cv2
import numpy as np
import pandas as pd
import gradio as gr
from skimage import measure, morphology
from skimage.segmentation import watershed
import matplotlib.pyplot as plt
def process_image(image):
"""Process uploaded image and extract cell features"""
# Convert to BGR if image is RGB
if len(image.shape) == 3:
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# Basic preprocessing
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
enhanced = clahe.apply(gray)
blurred = cv2.medianBlur(enhanced, 5)
# Segmentation
thresh = cv2.adaptiveThreshold(
blurred, 255,
cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV, 21, 4
)
# Clean small noise
cleaned = morphology.opening(thresh, morphology.disk(2))
# Watershed segmentation
sure_bg = cv2.dilate(cleaned, morphology.disk(3), iterations=3)
dist = cv2.distanceTransform(cleaned, cv2.DIST_L2, 5)
ret, sure_fg = cv2.threshold(dist, 0.5*dist.max(), 255, 0)
sure_fg = np.uint8(sure_fg)
unknown = cv2.subtract(sure_bg, sure_fg)
# Marker labelling
ret, markers = cv2.connectedComponents(sure_fg)
markers += 1
markers[unknown == 255] = 0
markers = watershed(-dist, markers, mask=cleaned)
# Extract features
features = []
props = measure.regionprops(markers, intensity_image=gray)
for i, prop in enumerate(props):
if prop.area < 50: # Filter small regions
continue
features.append({
'cell_id': i+1,
'area': prop.area,
'perimeter': prop.perimeter,
'circularity': (4 * np.pi * prop.area) / (prop.perimeter**2 + 1e-6),
'mean_intensity': prop.mean_intensity,
'centroid_x': prop.centroid[1],
'centroid_y': prop.centroid[0]
})
# Create visualization
vis_img = image.copy()
contours = measure.find_contours(markers, 0.5)
# Draw contours and cell IDs
for contour in contours:
coords = contour.astype(int)
cv2.drawContours(vis_img, [coords], -1, (0,255,0), 1)
for region in measure.regionprops(markers):
if region.area >= 50:
y, x = region.centroid
cv2.putText(vis_img, str(region.label),
(int(x), int(y)),
cv2.FONT_HERSHEY_SIMPLEX,
0.4, (255,0,0), 1)
# Create summary plots
fig, axes = plt.subplots(1, 2, figsize=(12, 6))
# Cell size distribution
df = pd.DataFrame(features)
if not df.empty:
df['area'].hist(ax=axes[0], bins=20)
axes[0].set_title('Cell Size Distribution')
axes[0].set_xlabel('Area')
axes[0].set_ylabel('Count')
# Circularity vs Intensity
axes[1].scatter(df['circularity'], df['mean_intensity'])
axes[1].set_title('Circularity vs Intensity')
axes[1].set_xlabel('Circularity')
axes[1].set_ylabel('Mean Intensity')
else:
axes[0].text(0.5, 0.5, 'No cells detected', ha='center')
axes[1].text(0.5, 0.5, 'No cells detected', ha='center')
plt.tight_layout()
return (
cv2.cvtColor(vis_img, cv2.COLOR_BGR2RGB),
fig,
df
)
# Create Gradio interface
with gr.Blocks(title="Cell Analysis Tool") as demo:
gr.Markdown("""
# 🔬 Bioengineering Cell Analysis Tool
Upload microscopy images to analyze cell properties:
- Automated cell detection
- Feature extraction (size, shape, intensity)
- Statistical analysis
**Instructions:**
1. Upload an image containing cells
2. Wait for analysis to complete
3. Review results in three tabs:
- Detected cells visualization
- Statistical plots
- Detailed measurements table
""")
with gr.Row():
with gr.Column():
# Fixed the Image component configuration
input_image = gr.Image(
label="Upload Image",
type="numpy"
)
analyze_btn = gr.Button(
"Analyze Image",
variant="primary"
)
with gr.Column():
with gr.Tabs():
with gr.Tab("Detection Results"):
output_image = gr.Image(
label="Detected Cells"
)
with gr.Tab("Statistics"):
output_plot = gr.Plot(
label="Statistical Analysis"
)
with gr.Tab("Measurements"):
output_table = gr.DataFrame(
label="Cell Features"
)
analyze_btn.click(
fn=process_image,
inputs=input_image,
outputs=[output_image, output_plot, output_table]
)
# Launch the demo
if __name__ == "__main__":
demo.launch() |