ibrahim313's picture
Update app.py
8f2167b verified
raw
history blame
8.66 kB
import cv2
import numpy as np
import pandas as pd
import gradio as gr
from skimage import measure, morphology
from skimage.segmentation import watershed
import matplotlib.pyplot as plt
from datetime import datetime
import logging
def apply_color_transformation(image, transform_type):
"""Apply different color transformations to the image"""
if len(image.shape) == 3:
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
if transform_type == "Original":
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
elif transform_type == "Grayscale":
return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
elif transform_type == "Binary":
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
_, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
return binary
elif transform_type == "CLAHE":
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
return clahe.apply(gray)
return image
def process_image(image, transform_type):
"""Process uploaded image and extract cell features"""
if image is None:
return None, None, None, None
try:
# Store original image for color transformations
original_image = image.copy()
# Convert to BGR if needed
if len(image.shape) == 3:
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# Basic preprocessing
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
enhanced = clahe.apply(gray)
blurred = cv2.medianBlur(enhanced, 5)
# Thresholding
_, binary = cv2.threshold(blurred, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# Noise removal and cell separation
kernel = np.ones((3,3), np.uint8)
opening = cv2.morphologyEx(binary, cv2.MORPH_OPEN, kernel, iterations=2)
# Sure background area
sure_bg = cv2.dilate(opening, kernel, iterations=3)
# Finding sure foreground area
dist_transform = cv2.distanceTransform(opening, cv2.DIST_L2, 5)
_, sure_fg = cv2.threshold(dist_transform, 0.5 * dist_transform.max(), 255, 0)
sure_fg = sure_fg.astype(np.uint8)
# Finding unknown region
unknown = cv2.subtract(sure_bg, sure_fg)
# Marker labelling
_, markers = cv2.connectedComponents(sure_fg)
markers = markers + 1
markers[unknown == 255] = 0
# Apply watershed
markers = cv2.watershed(image, markers)
# Extract features
features = []
for region in measure.regionprops(markers):
if region.area >= 50: # Filter small regions
features.append({
'label': region.label,
'area': region.area,
'perimeter': region.perimeter,
'circularity': (4 * np.pi * region.area) / (region.perimeter ** 2) if region.perimeter > 0 else 0,
'mean_intensity': region.mean_intensity,
'centroid_x': region.centroid[1],
'centroid_y': region.centroid[0]
})
# Create visualization
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
vis_img = image.copy()
# Draw contours
contours = measure.find_contours(markers, 0.5)
for contour in contours:
coords = np.array(contour).astype(int)
coords = coords[:, [1, 0]] # Swap x and y coordinates
coords = coords.reshape((-1, 1, 2))
cv2.polylines(vis_img, [coords], True, (0, 255, 0), 2)
# Add cell labels and measurements
for feature in features:
x = int(feature['centroid_x'])
y = int(feature['centroid_y'])
# White outline
cv2.putText(vis_img, str(feature['label']),
(x, y), cv2.FONT_HERSHEY_SIMPLEX,
0.5, (255,255,255), 2)
# Red text
cv2.putText(vis_img, str(feature['label']),
(x, y), cv2.FONT_HERSHEY_SIMPLEX,
0.5, (0,0,255), 1)
# Add timestamp
cv2.putText(vis_img, f"Analyzed: {timestamp}",
(10, 30), cv2.FONT_HERSHEY_SIMPLEX,
0.7, (255,255,255), 2)
# Create plots
plt.style.use('seaborn')
fig, axes = plt.subplots(2, 2, figsize=(15, 12))
fig.suptitle('Cell Analysis Results', fontsize=16, y=0.95)
df = pd.DataFrame(features)
if not df.empty:
# Distribution plots
df['area'].hist(ax=axes[0,0], bins=20, color='skyblue', edgecolor='black')
axes[0,0].set_title('Cell Size Distribution')
axes[0,0].set_xlabel('Area')
axes[0,0].set_ylabel('Count')
df['circularity'].hist(ax=axes[0,1], bins=20, color='lightgreen', edgecolor='black')
axes[0,1].set_title('Circularity Distribution')
axes[0,1].set_xlabel('Circularity')
axes[0,1].set_ylabel('Count')
# Scatter plots
axes[1,0].scatter(df['circularity'], df['mean_intensity'],
alpha=0.6, c='purple')
axes[1,0].set_title('Circularity vs Intensity')
axes[1,0].set_xlabel('Circularity')
axes[1,0].set_ylabel('Mean Intensity')
# Box plot
df.boxplot(column=['area', 'circularity'], ax=axes[1,1])
axes[1,1].set_title('Feature Distributions')
else:
for ax in axes.flat:
ax.text(0.5, 0.5, 'No cells detected', ha='center', va='center')
plt.tight_layout()
# Apply color transformation
transformed_image = apply_color_transformation(original_image, transform_type)
return (
cv2.cvtColor(vis_img, cv2.COLOR_BGR2RGB),
transformed_image,
fig,
df
)
except Exception as e:
print(f"Error processing image: {str(e)}")
return None, None, None, None
# Create Gradio interface
with gr.Blocks(title="Advanced Cell Analysis Tool", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# πŸ”¬ Advanced Bioengineering Cell Analysis Tool
## Features
- πŸ” Automated cell detection and measurement
- πŸ“Š Comprehensive statistical analysis
- 🎨 Multiple visualization options
- πŸ“₯ Downloadable results
## Author
- **Muhammad Ibrahim Qasmi**
- [LinkedIn](https://www.linkedin.com/in/muhammad-ibrahim-qasmi-9876a1297/)
""")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(
label="Upload Image",
type="numpy"
)
transform_type = gr.Dropdown(
choices=["Original", "Grayscale", "Binary", "CLAHE"],
value="Original",
label="Image Transform"
)
analyze_btn = gr.Button(
"Analyze Image",
variant="primary",
size="lg"
)
with gr.Column(scale=2):
with gr.Tabs():
with gr.Tab("Analysis Results"):
output_image = gr.Image(
label="Detected Cells"
)
gr.Markdown("*Green contours show detected cells, red numbers are cell IDs*")
with gr.Tab("Image Transformations"):
transformed_image = gr.Image(
label="Transformed Image"
)
gr.Markdown("*Select different transformations from the dropdown menu*")
with gr.Tab("Statistics"):
output_plot = gr.Plot(
label="Statistical Analysis"
)
gr.Markdown("*Hover over plots for detailed values*")
with gr.Tab("Data"):
output_table = gr.DataFrame(
label="Cell Features"
)
analyze_btn.click(
fn=process_image,
inputs=[input_image, transform_type],
outputs=[output_image, transformed_image, output_plot, output_table]
)
# Launch the demo
if __name__ == "__main__":
demo.launch()