ibrahim313's picture
Update app.py
c2460b3 verified
raw
history blame
8.92 kB
import cv2
import numpy as np
import pandas as pd
import gradio as gr
from skimage import measure, morphology
import matplotlib.pyplot as plt
from datetime import datetime
def detect_blood_cells(image):
"""Specialized function for blood cell detection"""
# Convert to RGB if grayscale
if len(image.shape) == 2:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
# Convert to HSV color space
hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
# Create mask for red blood cells
# Red color has two ranges in HSV
lower_red1 = np.array([0, 70, 50])
upper_red1 = np.array([10, 255, 255])
lower_red2 = np.array([170, 70, 50])
upper_red2 = np.array([180, 255, 255])
mask1 = cv2.inRange(hsv, lower_red1, upper_red1)
mask2 = cv2.inRange(hsv, lower_red2, upper_red2)
mask = mask1 + mask2
# Noise removal and smoothing
kernel = np.ones((3,3), np.uint8)
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel, iterations=2)
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel, iterations=2)
# Find contours
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
return contours, mask
def apply_color_transformation(image, transform_type):
"""Apply different color transformations to the image"""
if len(image.shape) == 2:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
if transform_type == "Original":
return image
elif transform_type == "Grayscale":
return cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
elif transform_type == "Binary":
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
_, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
return binary
elif transform_type == "CLAHE":
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
return clahe.apply(gray)
return image
def process_image(image, transform_type):
"""Process uploaded image and extract blood cell features"""
if image is None:
return None, None, None, None
try:
# Store original image for transformations
original_image = image.copy()
# Detect blood cells
contours, mask = detect_blood_cells(image)
# Extract features
features = []
for i, contour in enumerate(contours, 1):
area = cv2.contourArea(contour)
# Filter out very small or very large regions
if 100 < area < 5000: # Adjust these thresholds based on your images
perimeter = cv2.arcLength(contour, True)
circularity = 4 * np.pi * area / (perimeter * perimeter) if perimeter > 0 else 0
# Only include if it's reasonably circular
if circularity > 0.7: # Adjust threshold as needed
M = cv2.moments(contour)
if M["m00"] != 0:
cx = int(M["m10"] / M["m00"])
cy = int(M["m01"] / M["m00"])
features.append({
'label': i,
'area': area,
'perimeter': perimeter,
'circularity': circularity,
'centroid_x': cx,
'centroid_y': cy
})
# Create visualization
vis_img = image.copy()
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# Draw contours and labels
for feature in features:
contour = contours[feature['label']-1]
cv2.drawContours(vis_img, [contour], -1, (0, 255, 0), 2)
# Add cell labels
x = feature['centroid_x']
y = feature['centroid_y']
# White outline
cv2.putText(vis_img, str(feature['label']),
(x, y), cv2.FONT_HERSHEY_SIMPLEX,
0.5, (255, 255, 255), 2)
# Red text
cv2.putText(vis_img, str(feature['label']),
(x, y), cv2.FONT_HERSHEY_SIMPLEX,
0.5, (0, 0, 255), 1)
# Add timestamp and cell count
cv2.putText(vis_img, f"Analyzed: {timestamp} | Cells: {len(features)}",
(10, 30), cv2.FONT_HERSHEY_SIMPLEX,
0.7, (255, 255, 255), 2)
# Create analysis plots with default style
plt.style.use('default')
fig, axes = plt.subplots(2, 2, figsize=(15, 12))
fig.suptitle('Blood Cell Analysis Results', fontsize=16, y=0.95)
df = pd.DataFrame(features)
if not df.empty:
# Distribution plots
axes[0,0].hist(df['area'], bins=20, color='skyblue', edgecolor='black')
axes[0,0].set_title('Cell Size Distribution')
axes[0,0].set_xlabel('Area (pixels)')
axes[0,0].set_ylabel('Count')
axes[0,0].grid(True, alpha=0.3)
axes[0,1].hist(df['circularity'], bins=20, color='lightgreen', edgecolor='black')
axes[0,1].set_title('Circularity Distribution')
axes[0,1].set_xlabel('Circularity')
axes[0,1].set_ylabel('Count')
axes[0,1].grid(True, alpha=0.3)
# Scatter plot
axes[1,0].scatter(df['area'], df['circularity'], alpha=0.6, c='purple')
axes[1,0].set_title('Area vs Circularity')
axes[1,0].set_xlabel('Area')
axes[1,0].set_ylabel('Circularity')
axes[1,0].grid(True, alpha=0.3)
# Box plot
df.boxplot(column=['area', 'circularity'], ax=axes[1,1])
axes[1,1].set_title('Feature Distributions')
axes[1,1].grid(True, alpha=0.3)
else:
for ax in axes.flat:
ax.text(0.5, 0.5, 'No cells detected', ha='center', va='center')
plt.tight_layout()
# Apply color transformation
transformed_image = apply_color_transformation(original_image, transform_type)
return (
vis_img,
transformed_image,
fig,
df
)
except Exception as e:
print(f"Error processing image: {str(e)}")
import traceback
traceback.print_exc() # This will print the full error trace
return None, None, None, None
# Create Gradio interface
with gr.Blocks(title="Advanced Cell Analysis Tool", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# πŸ”¬ Advanced Bioengineering Cell Analysis Tool
## Features
- πŸ” Automated cell detection and measurement
- πŸ“Š Comprehensive statistical analysis
- 🎨 Multiple visualization options
- πŸ“₯ Downloadable results
## Author
- **Muhammad Ibrahim Qasmi**
- [LinkedIn](https://www.linkedin.com/in/muhammad-ibrahim-qasmi-9876a1297/)
""")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(
label="Upload Image",
type="numpy"
)
transform_type = gr.Dropdown(
choices=["Original", "Grayscale", "Binary", "CLAHE"],
value="Original",
label="Image Transform"
)
analyze_btn = gr.Button(
"Analyze Image",
variant="primary",
size="lg"
)
with gr.Column(scale=2):
with gr.Tabs():
with gr.Tab("Analysis Results"):
output_image = gr.Image(
label="Detected Cells"
)
gr.Markdown("*Green contours show detected cells, red numbers are cell IDs*")
with gr.Tab("Image Transformations"):
transformed_image = gr.Image(
label="Transformed Image"
)
gr.Markdown("*Select different transformations from the dropdown menu*")
with gr.Tab("Statistics"):
output_plot = gr.Plot(
label="Statistical Analysis"
)
gr.Markdown("*Hover over plots for detailed values*")
with gr.Tab("Data"):
output_table = gr.DataFrame(
label="Cell Features"
)
analyze_btn.click(
fn=process_image,
inputs=[input_image, transform_type],
outputs=[output_image, transformed_image, output_plot, output_table]
)
# Launch the demo
if __name__ == "__main__":
demo.launch()