File size: 8,919 Bytes
8312ddd
 
 
 
 
 
d28c822
3cf3c0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8312ddd
d28c822
 
3cf3c0d
 
8f2167b
 
3cf3c0d
8f2167b
3cf3c0d
8f2167b
3cf3c0d
8f2167b
 
 
3cf3c0d
8f2167b
 
 
d28c822
 
3cf3c0d
8f2167b
 
 
fc4ac67
3cf3c0d
fc4ac67
d28c822
3cf3c0d
 
a0d6076
8f2167b
a0d6076
3cf3c0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0d6076
8f2167b
 
3cf3c0d
a0d6076
3cf3c0d
8f2167b
3cf3c0d
 
 
 
 
 
8f2167b
 
 
3cf3c0d
8f2167b
 
 
3cf3c0d
8f2167b
3cf3c0d
 
8f2167b
3cf3c0d
8f2167b
c2460b3
 
fc4ac67
3cf3c0d
fc4ac67
 
 
 
c2460b3
fc4ac67
3cf3c0d
8f2167b
c2460b3
fc4ac67
c2460b3
fc4ac67
8f2167b
 
c2460b3
fc4ac67
3cf3c0d
 
 
 
 
c2460b3
fc4ac67
a0d6076
fc4ac67
8f2167b
c2460b3
fc4ac67
 
 
 
 
 
a0d6076
8f2167b
fc4ac67
 
3cf3c0d
8f2167b
fc4ac67
 
 
8f2167b
fc4ac67
8f2167b
c2460b3
 
8f2167b
8312ddd
3cf3c0d
 
8f2167b
d28c822
8312ddd
d28c822
 
 
 
 
 
 
 
 
 
 
8312ddd
 
 
d28c822
8312ddd
 
e9a9c89
8312ddd
d28c822
 
 
 
 
8312ddd
d28c822
 
 
8312ddd
 
d28c822
8312ddd
d28c822
8312ddd
 
 
d28c822
 
 
 
 
 
 
 
8312ddd
 
 
 
d28c822
 
 
8312ddd
 
 
 
 
 
d28c822
 
8312ddd
 
 
 
8f2167b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import cv2
import numpy as np
import pandas as pd
import gradio as gr
from skimage import measure, morphology
import matplotlib.pyplot as plt
from datetime import datetime

def detect_blood_cells(image):
    """Specialized function for blood cell detection"""
    # Convert to RGB if grayscale
    if len(image.shape) == 2:
        image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
    
    # Convert to HSV color space
    hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
    
    # Create mask for red blood cells
    # Red color has two ranges in HSV
    lower_red1 = np.array([0, 70, 50])
    upper_red1 = np.array([10, 255, 255])
    lower_red2 = np.array([170, 70, 50])
    upper_red2 = np.array([180, 255, 255])
    
    mask1 = cv2.inRange(hsv, lower_red1, upper_red1)
    mask2 = cv2.inRange(hsv, lower_red2, upper_red2)
    mask = mask1 + mask2
    
    # Noise removal and smoothing
    kernel = np.ones((3,3), np.uint8)
    mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel, iterations=2)
    mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel, iterations=2)
    
    # Find contours
    contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    
    return contours, mask

def apply_color_transformation(image, transform_type):
    """Apply different color transformations to the image"""
    if len(image.shape) == 2:
        image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
    
    if transform_type == "Original":
        return image
    elif transform_type == "Grayscale":
        return cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
    elif transform_type == "Binary":
        gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
        _, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
        return binary
    elif transform_type == "CLAHE":
        gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
        clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
        return clahe.apply(gray)
    return image

def process_image(image, transform_type):
    """Process uploaded image and extract blood cell features"""
    if image is None:
        return None, None, None, None
    
    try:
        # Store original image for transformations
        original_image = image.copy()
        
        # Detect blood cells
        contours, mask = detect_blood_cells(image)
        
        # Extract features
        features = []
        for i, contour in enumerate(contours, 1):
            area = cv2.contourArea(contour)
            # Filter out very small or very large regions
            if 100 < area < 5000:  # Adjust these thresholds based on your images
                perimeter = cv2.arcLength(contour, True)
                circularity = 4 * np.pi * area / (perimeter * perimeter) if perimeter > 0 else 0
                
                # Only include if it's reasonably circular
                if circularity > 0.7:  # Adjust threshold as needed
                    M = cv2.moments(contour)
                    if M["m00"] != 0:
                        cx = int(M["m10"] / M["m00"])
                        cy = int(M["m01"] / M["m00"])
                        
                        features.append({
                            'label': i,
                            'area': area,
                            'perimeter': perimeter,
                            'circularity': circularity,
                            'centroid_x': cx,
                            'centroid_y': cy
                        })
        
        # Create visualization
        vis_img = image.copy()
        timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        
        # Draw contours and labels
        for feature in features:
            contour = contours[feature['label']-1]
            cv2.drawContours(vis_img, [contour], -1, (0, 255, 0), 2)
            
            # Add cell labels
            x = feature['centroid_x']
            y = feature['centroid_y']
            # White outline
            cv2.putText(vis_img, str(feature['label']), 
                       (x, y), cv2.FONT_HERSHEY_SIMPLEX, 
                       0.5, (255, 255, 255), 2)
            # Red text
            cv2.putText(vis_img, str(feature['label']), 
                       (x, y), cv2.FONT_HERSHEY_SIMPLEX, 
                       0.5, (0, 0, 255), 1)
        
        # Add timestamp and cell count
        cv2.putText(vis_img, f"Analyzed: {timestamp} | Cells: {len(features)}", 
                    (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 
                    0.7, (255, 255, 255), 2)
        
        # Create analysis plots with default style
        plt.style.use('default')
        fig, axes = plt.subplots(2, 2, figsize=(15, 12))
        fig.suptitle('Blood Cell Analysis Results', fontsize=16, y=0.95)
        
        df = pd.DataFrame(features)
        if not df.empty:
            # Distribution plots
            axes[0,0].hist(df['area'], bins=20, color='skyblue', edgecolor='black')
            axes[0,0].set_title('Cell Size Distribution')
            axes[0,0].set_xlabel('Area (pixels)')
            axes[0,0].set_ylabel('Count')
            axes[0,0].grid(True, alpha=0.3)
            
            axes[0,1].hist(df['circularity'], bins=20, color='lightgreen', edgecolor='black')
            axes[0,1].set_title('Circularity Distribution')
            axes[0,1].set_xlabel('Circularity')
            axes[0,1].set_ylabel('Count')
            axes[0,1].grid(True, alpha=0.3)
            
            # Scatter plot
            axes[1,0].scatter(df['area'], df['circularity'], alpha=0.6, c='purple')
            axes[1,0].set_title('Area vs Circularity')
            axes[1,0].set_xlabel('Area')
            axes[1,0].set_ylabel('Circularity')
            axes[1,0].grid(True, alpha=0.3)
            
            # Box plot
            df.boxplot(column=['area', 'circularity'], ax=axes[1,1])
            axes[1,1].set_title('Feature Distributions')
            axes[1,1].grid(True, alpha=0.3)
        else:
            for ax in axes.flat:
                ax.text(0.5, 0.5, 'No cells detected', ha='center', va='center')
        
        plt.tight_layout()
        
        # Apply color transformation
        transformed_image = apply_color_transformation(original_image, transform_type)
        
        return (
            vis_img,
            transformed_image,
            fig,
            df
        )
    
    except Exception as e:
        print(f"Error processing image: {str(e)}")
        import traceback
        traceback.print_exc()  # This will print the full error trace
        return None, None, None, None



# Create Gradio interface
with gr.Blocks(title="Advanced Cell Analysis Tool", theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    # πŸ”¬ Advanced Bioengineering Cell Analysis Tool
    
    ## Features
    - πŸ” Automated cell detection and measurement
    - πŸ“Š Comprehensive statistical analysis
    - 🎨 Multiple visualization options
    - πŸ“₯ Downloadable results
    
    ## Author
    - **Muhammad Ibrahim Qasmi**
    - [LinkedIn](https://www.linkedin.com/in/muhammad-ibrahim-qasmi-9876a1297/)
    """)
    
    with gr.Row():
        with gr.Column(scale=1):
            input_image = gr.Image(
                label="Upload Image",
                type="numpy"
            )
            transform_type = gr.Dropdown(
                choices=["Original", "Grayscale", "Binary", "CLAHE"],
                value="Original",
                label="Image Transform"
            )
            analyze_btn = gr.Button(
                "Analyze Image",
                variant="primary",
                size="lg"
            )
        
        with gr.Column(scale=2):
            with gr.Tabs():
                with gr.Tab("Analysis Results"):
                    output_image = gr.Image(
                        label="Detected Cells"
                    )
                    gr.Markdown("*Green contours show detected cells, red numbers are cell IDs*")
                
                with gr.Tab("Image Transformations"):
                    transformed_image = gr.Image(
                        label="Transformed Image"
                    )
                    gr.Markdown("*Select different transformations from the dropdown menu*")
                
                with gr.Tab("Statistics"):
                    output_plot = gr.Plot(
                        label="Statistical Analysis"
                    )
                    gr.Markdown("*Hover over plots for detailed values*")
                
                with gr.Tab("Data"):
                    output_table = gr.DataFrame(
                        label="Cell Features"
                    )
    
    analyze_btn.click(
        fn=process_image,
        inputs=[input_image, transform_type],
        outputs=[output_image, transformed_image, output_plot, output_table]
    )

# Launch the demo
if __name__ == "__main__":
    demo.launch()