Update app.py
Browse files
app.py
CHANGED
@@ -2,11 +2,12 @@ import cv2
|
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
import gradio as gr
|
|
|
5 |
import matplotlib.pyplot as plt
|
6 |
from datetime import datetime
|
7 |
|
8 |
def detect_blood_cells(image):
|
9 |
-
"""
|
10 |
# Convert to RGB if grayscale
|
11 |
if len(image.shape) == 2:
|
12 |
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
|
@@ -14,48 +15,45 @@ def detect_blood_cells(image):
|
|
14 |
# Convert to HSV color space
|
15 |
hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
|
16 |
|
17 |
-
#
|
18 |
-
|
|
|
19 |
upper_red1 = np.array([10, 255, 255])
|
20 |
-
lower_red2 = np.array([
|
21 |
upper_red2 = np.array([180, 255, 255])
|
22 |
|
23 |
-
# Create masks for red color
|
24 |
mask1 = cv2.inRange(hsv, lower_red1, upper_red1)
|
25 |
mask2 = cv2.inRange(hsv, lower_red2, upper_red2)
|
26 |
mask = mask1 + mask2
|
27 |
-
|
28 |
-
# Enhanced noise removal
|
29 |
-
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3,3))
|
30 |
-
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel, iterations=1)
|
31 |
-
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel, iterations=2)
|
32 |
-
|
33 |
-
# Apply distance transform to separate touching cells
|
34 |
-
dist_transform = cv2.distanceTransform(mask, cv2.DIST_L2, 5)
|
35 |
-
_, sure_fg = cv2.threshold(dist_transform, 0.5 * dist_transform.max(), 255, 0)
|
36 |
-
sure_fg = np.uint8(sure_fg)
|
37 |
|
38 |
-
#
|
39 |
-
|
|
|
|
|
40 |
|
41 |
-
# Find contours
|
42 |
-
contours,
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
continue
|
51 |
-
|
52 |
-
circularity = 4 * np.pi * area / (perimeter * perimeter)
|
53 |
-
|
54 |
-
# Optimized thresholds for your specific images
|
55 |
-
if 500 < area < 2500 and circularity > 0.8: # Adjusted thresholds
|
56 |
-
filtered_contours.append(contour)
|
57 |
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
def process_image(image, transform_type):
|
61 |
"""Process uploaded image and extract blood cell features"""
|
@@ -63,68 +61,64 @@ def process_image(image, transform_type):
|
|
63 |
return None, None, None, None
|
64 |
|
65 |
try:
|
66 |
-
# Store original image
|
67 |
original_image = image.copy()
|
68 |
|
69 |
# Detect blood cells
|
70 |
-
contours,
|
71 |
|
72 |
# Extract features
|
73 |
features = []
|
74 |
for i, contour in enumerate(contours, 1):
|
75 |
area = cv2.contourArea(contour)
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
M = cv2.moments(contour)
|
81 |
-
if M["m00"] != 0:
|
82 |
-
cx = int(M["m10"] / M["m00"])
|
83 |
-
cy = int(M["m01"] / M["m00"])
|
84 |
-
|
85 |
-
# Extract mean color intensity
|
86 |
-
mask = np.zeros(image.shape[:2], dtype=np.uint8)
|
87 |
-
cv2.drawContours(mask, [contour], -1, 255, -1)
|
88 |
-
mean_intensity = cv2.mean(cv2.cvtColor(image, cv2.COLOR_RGB2GRAY), mask=mask)[0]
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
# Create visualization
|
101 |
vis_img = image.copy()
|
102 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
103 |
|
104 |
-
# Draw contours and labels
|
105 |
for feature in features:
|
106 |
-
|
107 |
-
cv2.drawContours(vis_img,
|
108 |
|
109 |
# Add cell labels
|
110 |
x = feature['centroid_x']
|
111 |
y = feature['centroid_y']
|
112 |
# White outline
|
113 |
cv2.putText(vis_img, str(feature['label']),
|
114 |
-
(x
|
115 |
-
0.
|
116 |
# Red text
|
117 |
cv2.putText(vis_img, str(feature['label']),
|
118 |
-
(x
|
119 |
-
0.
|
120 |
|
121 |
-
# Add timestamp and cell count
|
122 |
-
|
123 |
-
|
124 |
-
(
|
125 |
-
0.6, (255, 255, 255), 2)
|
126 |
|
127 |
-
# Create analysis plots
|
128 |
plt.style.use('default')
|
129 |
fig, axes = plt.subplots(2, 2, figsize=(15, 12))
|
130 |
fig.suptitle('Blood Cell Analysis Results', fontsize=16, y=0.95)
|
@@ -145,14 +139,11 @@ def process_image(image, transform_type):
|
|
145 |
axes[0,1].grid(True, alpha=0.3)
|
146 |
|
147 |
# Scatter plot
|
148 |
-
|
149 |
-
|
150 |
-
alpha=0.6)
|
151 |
-
axes[1,0].set_title('Area vs Intensity')
|
152 |
axes[1,0].set_xlabel('Area')
|
153 |
-
axes[1,0].set_ylabel('
|
154 |
axes[1,0].grid(True, alpha=0.3)
|
155 |
-
plt.colorbar(scatter, ax=axes[1,0], label='Circularity')
|
156 |
|
157 |
# Box plot
|
158 |
df.boxplot(column=['area', 'circularity'], ax=axes[1,1])
|
@@ -177,7 +168,7 @@ def process_image(image, transform_type):
|
|
177 |
except Exception as e:
|
178 |
print(f"Error processing image: {str(e)}")
|
179 |
import traceback
|
180 |
-
traceback.print_exc()
|
181 |
return None, None, None, None
|
182 |
|
183 |
|
|
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
import gradio as gr
|
5 |
+
from skimage import measure, morphology
|
6 |
import matplotlib.pyplot as plt
|
7 |
from datetime import datetime
|
8 |
|
9 |
def detect_blood_cells(image):
|
10 |
+
"""Specialized function for blood cell detection"""
|
11 |
# Convert to RGB if grayscale
|
12 |
if len(image.shape) == 2:
|
13 |
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
|
|
|
15 |
# Convert to HSV color space
|
16 |
hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
|
17 |
|
18 |
+
# Create mask for red blood cells
|
19 |
+
# Red color has two ranges in HSV
|
20 |
+
lower_red1 = np.array([0, 70, 50])
|
21 |
upper_red1 = np.array([10, 255, 255])
|
22 |
+
lower_red2 = np.array([170, 70, 50])
|
23 |
upper_red2 = np.array([180, 255, 255])
|
24 |
|
|
|
25 |
mask1 = cv2.inRange(hsv, lower_red1, upper_red1)
|
26 |
mask2 = cv2.inRange(hsv, lower_red2, upper_red2)
|
27 |
mask = mask1 + mask2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
# Noise removal and smoothing
|
30 |
+
kernel = np.ones((3,3), np.uint8)
|
31 |
+
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel, iterations=2)
|
32 |
+
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel, iterations=2)
|
33 |
|
34 |
+
# Find contours
|
35 |
+
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
36 |
|
37 |
+
return contours, mask
|
38 |
+
|
39 |
+
def apply_color_transformation(image, transform_type):
|
40 |
+
"""Apply different color transformations to the image"""
|
41 |
+
if len(image.shape) == 2:
|
42 |
+
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
if transform_type == "Original":
|
45 |
+
return image
|
46 |
+
elif transform_type == "Grayscale":
|
47 |
+
return cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
48 |
+
elif transform_type == "Binary":
|
49 |
+
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
50 |
+
_, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
|
51 |
+
return binary
|
52 |
+
elif transform_type == "CLAHE":
|
53 |
+
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
54 |
+
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
|
55 |
+
return clahe.apply(gray)
|
56 |
+
return image
|
57 |
|
58 |
def process_image(image, transform_type):
|
59 |
"""Process uploaded image and extract blood cell features"""
|
|
|
61 |
return None, None, None, None
|
62 |
|
63 |
try:
|
64 |
+
# Store original image for transformations
|
65 |
original_image = image.copy()
|
66 |
|
67 |
# Detect blood cells
|
68 |
+
contours, mask = detect_blood_cells(image)
|
69 |
|
70 |
# Extract features
|
71 |
features = []
|
72 |
for i, contour in enumerate(contours, 1):
|
73 |
area = cv2.contourArea(contour)
|
74 |
+
# Filter out very small or very large regions
|
75 |
+
if 100 < area < 5000: # Adjust these thresholds based on your images
|
76 |
+
perimeter = cv2.arcLength(contour, True)
|
77 |
+
circularity = 4 * np.pi * area / (perimeter * perimeter) if perimeter > 0 else 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
+
# Only include if it's reasonably circular
|
80 |
+
if circularity > 0.7: # Adjust threshold as needed
|
81 |
+
M = cv2.moments(contour)
|
82 |
+
if M["m00"] != 0:
|
83 |
+
cx = int(M["m10"] / M["m00"])
|
84 |
+
cy = int(M["m01"] / M["m00"])
|
85 |
+
|
86 |
+
features.append({
|
87 |
+
'label': i,
|
88 |
+
'area': area,
|
89 |
+
'perimeter': perimeter,
|
90 |
+
'circularity': circularity,
|
91 |
+
'centroid_x': cx,
|
92 |
+
'centroid_y': cy
|
93 |
+
})
|
94 |
|
95 |
# Create visualization
|
96 |
vis_img = image.copy()
|
97 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
98 |
|
99 |
+
# Draw contours and labels
|
100 |
for feature in features:
|
101 |
+
contour = contours[feature['label']-1]
|
102 |
+
cv2.drawContours(vis_img, [contour], -1, (0, 255, 0), 2)
|
103 |
|
104 |
# Add cell labels
|
105 |
x = feature['centroid_x']
|
106 |
y = feature['centroid_y']
|
107 |
# White outline
|
108 |
cv2.putText(vis_img, str(feature['label']),
|
109 |
+
(x, y), cv2.FONT_HERSHEY_SIMPLEX,
|
110 |
+
0.5, (255, 255, 255), 2)
|
111 |
# Red text
|
112 |
cv2.putText(vis_img, str(feature['label']),
|
113 |
+
(x, y), cv2.FONT_HERSHEY_SIMPLEX,
|
114 |
+
0.5, (0, 0, 255), 1)
|
115 |
|
116 |
+
# Add timestamp and cell count
|
117 |
+
cv2.putText(vis_img, f"Analyzed: {timestamp} | Cells: {len(features)}",
|
118 |
+
(10, 30), cv2.FONT_HERSHEY_SIMPLEX,
|
119 |
+
0.7, (255, 255, 255), 2)
|
|
|
120 |
|
121 |
+
# Create analysis plots with default style
|
122 |
plt.style.use('default')
|
123 |
fig, axes = plt.subplots(2, 2, figsize=(15, 12))
|
124 |
fig.suptitle('Blood Cell Analysis Results', fontsize=16, y=0.95)
|
|
|
139 |
axes[0,1].grid(True, alpha=0.3)
|
140 |
|
141 |
# Scatter plot
|
142 |
+
axes[1,0].scatter(df['area'], df['circularity'], alpha=0.6, c='purple')
|
143 |
+
axes[1,0].set_title('Area vs Circularity')
|
|
|
|
|
144 |
axes[1,0].set_xlabel('Area')
|
145 |
+
axes[1,0].set_ylabel('Circularity')
|
146 |
axes[1,0].grid(True, alpha=0.3)
|
|
|
147 |
|
148 |
# Box plot
|
149 |
df.boxplot(column=['area', 'circularity'], ax=axes[1,1])
|
|
|
168 |
except Exception as e:
|
169 |
print(f"Error processing image: {str(e)}")
|
170 |
import traceback
|
171 |
+
traceback.print_exc() # This will print the full error trace
|
172 |
return None, None, None, None
|
173 |
|
174 |
|