File size: 1,139 Bytes
0b38715
 
 
 
43fbc49
75d623a
107902e
43fbc49
68c25a0
756261a
da4cf5c
 
0b38715
 
43fbc49
 
 
 
0b38715
 
43fbc49
 
 
 
0b38715
43fbc49
 
 
cbd42a4
5058858
43fbc49
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import gradio as gr
import tensorflow as tf
from tensorflow.keras.preprocessing import image
import numpy as np
from PIL import Image
from keras import layers

# Load your trained Xception model
model = tf.keras.models.load_model("xception-head.h5")

# Define the labels for your classification
class_labels = ['fresh', 'early decay', 'advanced decay','skeletonized']  # Replace with your actual class names

def classify_image(img):
    # Preprocess the image to fit the model input shape
    img = img.resize((299, 299))  # Xception takes 299x299 input size
    img = np.array(img) / 255.0   # Normalize the image
    img = np.expand_dims(img, axis=0)

    # Make prediction
    predictions = model.predict(img)
    predicted_class = np.argmax(predictions, axis=1)[0]
    confidence = np.max(predictions)
    return {class_labels[i]: float(predictions[0][i]) for i in range(len(class_labels))}, confidence

# Gradio interface
demo = gr.Interface(
    fn=classify_image,
    inputs=gr.Image(type="pil"),
    outputs=[gr.Label(num_top_classes=len(class_labels)), gr.Number()],
    live=True
)

if __name__ == "__main__":
    demo.launch()