File size: 1,139 Bytes
0b38715 43fbc49 75d623a 107902e 43fbc49 68c25a0 756261a da4cf5c 0b38715 43fbc49 0b38715 43fbc49 0b38715 43fbc49 cbd42a4 5058858 43fbc49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import gradio as gr
import tensorflow as tf
from tensorflow.keras.preprocessing import image
import numpy as np
from PIL import Image
from keras import layers
# Load your trained Xception model
model = tf.keras.models.load_model("xception-head.h5")
# Define the labels for your classification
class_labels = ['fresh', 'early decay', 'advanced decay','skeletonized'] # Replace with your actual class names
def classify_image(img):
# Preprocess the image to fit the model input shape
img = img.resize((299, 299)) # Xception takes 299x299 input size
img = np.array(img) / 255.0 # Normalize the image
img = np.expand_dims(img, axis=0)
# Make prediction
predictions = model.predict(img)
predicted_class = np.argmax(predictions, axis=1)[0]
confidence = np.max(predictions)
return {class_labels[i]: float(predictions[0][i]) for i in range(len(class_labels))}, confidence
# Gradio interface
demo = gr.Interface(
fn=classify_image,
inputs=gr.Image(type="pil"),
outputs=[gr.Label(num_top_classes=len(class_labels)), gr.Number()],
live=True
)
if __name__ == "__main__":
demo.launch()
|