File size: 1,777 Bytes
0b38715 43fbc49 75d623a 107902e 43fbc49 a687202 756261a da4cf5c 0b38715 43fbc49 0b38715 43fbc49 0b38715 aa1165c 78588ac 5a8b4a7 78588ac aa1165c 43fbc49 6d9fefc 2fb0b4c cbd42a4 5058858 78588ac 60e022a aa1165c 36a3ee3 43fbc49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import gradio as gr
import tensorflow as tf
from tensorflow.keras.preprocessing import image
import numpy as np
from PIL import Image
from keras import layers
# Load your trained Xception model
model = tf.keras.models.load_model("xception-head")
# Define the labels for your classification
class_labels = ['fresh', 'early decay', 'advanced decay','skeletonized'] # Replace with your actual class names
def classify_image(img):
# Preprocess the image to fit the model input shape
img = img.resize((299, 299)) # Xception takes 299x299 input size
img = np.array(img) / 255.0 # Normalize the image
img = np.expand_dims(img, axis=0)
# Make prediction
predictions = model.predict(img)
predicted_class = np.argmax(predictions, axis=1)[0]
confidence = np.max(predictions)
return {class_labels[i]: float(predictions[0][i]) for i in range(len(class_labels))}, confidence
# Example images (local paths or URLs)
example_images = [
'skeletonized.jpeg' # Replace with actual local file paths or URLs
]
# Gradio interface
demo = gr.Interface(
fn=classify_image,
title="Human Decomposition Image Classification",
description = "Predict the stage of decay (fresh, early decay, advanced decay, or skeletonized) of a head. This is a demo of one of our human decomposition image classification <a href=\"https://huggingface.co/icputrd/megyesi_decomposition_classification/blob/main/head/xception\">models</a>.",
inputs=gr.Image(type="pil"),
outputs=[gr.Label(num_top_classes=len(class_labels)), gr.Number()],
examples=example_images,
cache_examples=False,
live=True,
article = "Author: <a href=\"https://www.linkedin.com/in/anna-maria-nau/\">Anna-Maria Nau</a>"
)
if __name__ == "__main__":
demo.launch()
|