File size: 5,899 Bytes
8ccf632
 
 
 
 
1c15b98
 
 
 
76d8871
06f0278
 
8ccf632
 
1c15b98
76d8871
1c15b98
 
 
 
 
 
 
 
 
 
 
 
 
76d8871
bc0adb1
1c15b98
 
8ccf632
76d8871
 
1c15b98
 
 
76d8871
1c15b98
 
 
 
8b8f23c
 
1c15b98
 
 
 
54192f0
 
1c15b98
8ccf632
1c15b98
76d8871
 
 
 
 
 
 
 
 
 
 
1c15b98
 
 
e3512e3
 
 
 
8ccf632
 
1c15b98
8ccf632
 
e2944a6
8ccf632
 
 
 
 
1c15b98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ccf632
 
 
 
 
 
 
 
 
1c15b98
8ccf632
1c15b98
8ccf632
 
 
 
 
 
 
 
 
1c15b98
8ccf632
 
 
 
 
 
3b3f6c6
8ccf632
 
 
 
 
 
3b3f6c6
8ccf632
b213a9c
1c15b98
b213a9c
 
 
 
ceb48e8
 
b213a9c
8ccf632
 
 
 
 
b213a9c
8ccf632
1c15b98
8ccf632
e3512e3
 
 
 
 
8ccf632
 
 
2b62414
1c15b98
 
 
8ccf632
 
9aa8809
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import gradio as gr
import numpy as np
import random
import spaces
import torch

from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast

from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

# Загружаем автоэнкодер и VAE
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained(
    "ifmain/UltraReal_Fine-Tune",
    subfolder="vae",
    torch_dtype=dtype
).to(device)

# Загружаем основной пайплайн
pipe = DiffusionPipeline.from_pretrained(
    "ifmain/UltraReal_Fine-Tune",
    torch_dtype=dtype,
    vae=taef1
).to(device)

torch.cuda.empty_cache()

# Подключаем LoRA
pipe.load_lora_weights("ifMain/realism")

pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

@spaces.GPU(duration=75)
def infer(
    prompt,
    seed=42,
    randomize_seed=False,
    width=1280,
    height=732,
    guidance_scale=3.5,
    num_inference_steps=28,
    progress=gr.Progress(track_tqdm=True)
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
            prompt=prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            generator=generator,
            output_type="pil",
            good_vae=good_vae,
        ):
            yield img, seed

# Полные примеры с различными стилями и условиями съемки
full_examples = [
    ["d1g1cam, amateur photo, low-lit, Young woman, late 20s, casually dressed in an oversized pink T-shirt, outdoors, her gaze directed to the side, sad expression."],
    ["v8s, Dimly lit photo, grungy aesthetic, gritty urban, Los Angeles city on background, interior of muscle car driving at high speed, first-person perspective."],
    ["35mm film photo, high contrast, cinematic lighting, mid-20s man with messy dark hair and a leather jacket, standing under neon lights, rainy evening, water reflections on pavement."],
    ["Vintage Polaroid, warm and faded colors, soft focus. A child playing in a sunflower field, early morning sunlight filtering through the leaves, a dreamy nostalgic atmosphere."]
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(
            """# UltraReal Fine-Tune (Flux.1 Dev)  

            **🚀 Фотореализм нового уровня!**  
            Вышла 4-я версия **UltraReal Fine-Tune**, основанная на **Flux.1 Dev**.  
            Скачать можно тут: [Civitai](https://civitai.com/models/978314?modelVersionId=1413133)  

            **🚀 Next-level photorealism!**  
            The 4th version of **UltraReal Fine-Tune**, based on **Flux.1 Dev**, has been released.  
            You can download it here: [Civitai](https://civitai.com/models/978314?modelVersionId=1413133)  

            [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)] [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)]
            """
        )

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=732,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1280,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=1,
                    maximum=15,
                    step=0.1,
                    value=3.5,
                )
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=28,
                )

        gr.Examples(
          examples=full_examples,
          fn=infer,
          inputs=[prompt],  # Теперь передаём только prompt
          outputs=[result],
          cache_examples=False
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs=[result, seed]
    )

demo.launch()