Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,899 Bytes
8ccf632 1c15b98 76d8871 06f0278 8ccf632 1c15b98 76d8871 1c15b98 76d8871 bc0adb1 1c15b98 8ccf632 76d8871 1c15b98 76d8871 1c15b98 8b8f23c 1c15b98 54192f0 1c15b98 8ccf632 1c15b98 76d8871 1c15b98 e3512e3 8ccf632 1c15b98 8ccf632 e2944a6 8ccf632 1c15b98 8ccf632 1c15b98 8ccf632 1c15b98 8ccf632 1c15b98 8ccf632 3b3f6c6 8ccf632 3b3f6c6 8ccf632 b213a9c 1c15b98 b213a9c ceb48e8 b213a9c 8ccf632 b213a9c 8ccf632 1c15b98 8ccf632 e3512e3 8ccf632 2b62414 1c15b98 8ccf632 9aa8809 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
# Загружаем автоэнкодер и VAE
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained(
"ifmain/UltraReal_Fine-Tune",
subfolder="vae",
torch_dtype=dtype
).to(device)
# Загружаем основной пайплайн
pipe = DiffusionPipeline.from_pretrained(
"ifmain/UltraReal_Fine-Tune",
torch_dtype=dtype,
vae=taef1
).to(device)
torch.cuda.empty_cache()
# Подключаем LoRA
pipe.load_lora_weights("ifMain/realism")
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
@spaces.GPU(duration=75)
def infer(
prompt,
seed=42,
randomize_seed=False,
width=1280,
height=732,
guidance_scale=3.5,
num_inference_steps=28,
progress=gr.Progress(track_tqdm=True)
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
output_type="pil",
good_vae=good_vae,
):
yield img, seed
# Полные примеры с различными стилями и условиями съемки
full_examples = [
["d1g1cam, amateur photo, low-lit, Young woman, late 20s, casually dressed in an oversized pink T-shirt, outdoors, her gaze directed to the side, sad expression."],
["v8s, Dimly lit photo, grungy aesthetic, gritty urban, Los Angeles city on background, interior of muscle car driving at high speed, first-person perspective."],
["35mm film photo, high contrast, cinematic lighting, mid-20s man with messy dark hair and a leather jacket, standing under neon lights, rainy evening, water reflections on pavement."],
["Vintage Polaroid, warm and faded colors, soft focus. A child playing in a sunflower field, early morning sunlight filtering through the leaves, a dreamy nostalgic atmosphere."]
]
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(
"""# UltraReal Fine-Tune (Flux.1 Dev)
**🚀 Фотореализм нового уровня!**
Вышла 4-я версия **UltraReal Fine-Tune**, основанная на **Flux.1 Dev**.
Скачать можно тут: [Civitai](https://civitai.com/models/978314?modelVersionId=1413133)
**🚀 Next-level photorealism!**
The 4th version of **UltraReal Fine-Tune**, based on **Flux.1 Dev**, has been released.
You can download it here: [Civitai](https://civitai.com/models/978314?modelVersionId=1413133)
[[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)] [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)]
"""
)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=732,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1280,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.Examples(
examples=full_examples,
fn=infer,
inputs=[prompt], # Теперь передаём только prompt
outputs=[result],
cache_examples=False
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result, seed]
)
demo.launch() |