ifmain's picture
Update app.py
3b3f6c6 verified
raw
history blame
5.9 kB
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
# Загружаем автоэнкодер и VAE
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained(
"ifmain/UltraReal_Fine-Tune",
subfolder="vae",
torch_dtype=dtype
).to(device)
# Загружаем основной пайплайн
pipe = DiffusionPipeline.from_pretrained(
"ifmain/UltraReal_Fine-Tune",
torch_dtype=dtype,
vae=taef1
).to(device)
torch.cuda.empty_cache()
# Подключаем LoRA
pipe.load_lora_weights("ifMain/realism")
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
@spaces.GPU(duration=75)
def infer(
prompt,
seed=42,
randomize_seed=False,
width=1280,
height=732,
guidance_scale=3.5,
num_inference_steps=28,
progress=gr.Progress(track_tqdm=True)
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
output_type="pil",
good_vae=good_vae,
):
yield img, seed
# Полные примеры с различными стилями и условиями съемки
full_examples = [
["d1g1cam, amateur photo, low-lit, Young woman, late 20s, casually dressed in an oversized pink T-shirt, outdoors, her gaze directed to the side, sad expression."],
["v8s, Dimly lit photo, grungy aesthetic, gritty urban, Los Angeles city on background, interior of muscle car driving at high speed, first-person perspective."],
["35mm film photo, high contrast, cinematic lighting, mid-20s man with messy dark hair and a leather jacket, standing under neon lights, rainy evening, water reflections on pavement."],
["Vintage Polaroid, warm and faded colors, soft focus. A child playing in a sunflower field, early morning sunlight filtering through the leaves, a dreamy nostalgic atmosphere."]
]
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(
"""# UltraReal Fine-Tune (Flux.1 Dev)
**🚀 Фотореализм нового уровня!**
Вышла 4-я версия **UltraReal Fine-Tune**, основанная на **Flux.1 Dev**.
Скачать можно тут: [Civitai](https://civitai.com/models/978314?modelVersionId=1413133)
**🚀 Next-level photorealism!**
The 4th version of **UltraReal Fine-Tune**, based on **Flux.1 Dev**, has been released.
You can download it here: [Civitai](https://civitai.com/models/978314?modelVersionId=1413133)
[[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)] [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)]
"""
)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=732,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1280,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.Examples(
examples=full_examples,
fn=infer,
inputs=[prompt], # Теперь передаём только prompt
outputs=[result],
cache_examples=False
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result, seed]
)
demo.launch()