Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import random | |
import spaces | |
import torch | |
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL | |
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast | |
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images | |
dtype = torch.bfloat16 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Загружаем автоэнкодер и VAE | |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) | |
good_vae = AutoencoderKL.from_pretrained( | |
"ifmain/UltraReal_Fine-Tune", | |
subfolder="vae", | |
torch_dtype=dtype | |
).to(device) | |
# Загружаем основной пайплайн | |
pipe = DiffusionPipeline.from_pretrained( | |
"ifmain/UltraReal_Fine-Tune", | |
torch_dtype=dtype, | |
vae=taef1 | |
).to(device) | |
torch.cuda.empty_cache() | |
# Подключаем LoRA | |
pipe.load_lora_weights("ifMain/realism") | |
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
def infer( | |
prompt, | |
seed=42, | |
randomize_seed=False, | |
width=1280, | |
height=732, | |
guidance_scale=3.5, | |
num_inference_steps=28, | |
progress=gr.Progress(track_tqdm=True) | |
): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( | |
prompt=prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator, | |
output_type="pil", | |
good_vae=good_vae, | |
): | |
yield img, seed | |
# Полные примеры с различными стилями и условиями съемки | |
full_examples = [ | |
["d1g1cam, amateur photo, low-lit, Young woman, late 20s, casually dressed in an oversized pink T-shirt, outdoors, her gaze directed to the side, sad expression."], | |
["v8s, Dimly lit photo, grungy aesthetic, gritty urban, Los Angeles city on background, interior of muscle car driving at high speed, first-person perspective."], | |
["35mm film photo, high contrast, cinematic lighting, mid-20s man with messy dark hair and a leather jacket, standing under neon lights, rainy evening, water reflections on pavement."], | |
["Vintage Polaroid, warm and faded colors, soft focus. A child playing in a sunflower field, early morning sunlight filtering through the leaves, a dreamy nostalgic atmosphere."] | |
] | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown( | |
"""# UltraReal Fine-Tune (Flux.1 Dev) | |
**🚀 Фотореализм нового уровня!** | |
Вышла 4-я версия **UltraReal Fine-Tune**, основанная на **Flux.1 Dev**. | |
Скачать можно тут: [Civitai](https://civitai.com/models/978314?modelVersionId=1413133) | |
**🚀 Next-level photorealism!** | |
The 4th version of **UltraReal Fine-Tune**, based on **Flux.1 Dev**, has been released. | |
You can download it here: [Civitai](https://civitai.com/models/978314?modelVersionId=1413133) | |
[[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)] [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] | |
""" | |
) | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=732, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1280, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=1, | |
maximum=15, | |
step=0.1, | |
value=3.5, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=28, | |
) | |
gr.Examples( | |
examples=full_examples, | |
fn=infer, | |
inputs=[prompt], # Теперь передаём только prompt | |
outputs=[result], | |
cache_examples=False | |
) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
outputs=[result, seed] | |
) | |
demo.launch() |