File size: 1,174 Bytes
83b2555
e85680b
83b2555
f172b96
e89870a
e5c1e9d
e85680b
e89870a
 
1a2f706
7c4f5c0
e89870a
 
aaf4b38
e89870a
aaf4b38
e89870a
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
from huggingface_hub import from_pretrained_fastai
import gradio as gr
from fastai.vision.all import *
from icevision.all import *
from icevision.models.checkpoint import *
import PIL

checkpoint_path = "fasterRCNN_resnet18_Raccoons.pth"
model = models.torchvision.faster_rcnn.model(backbone=models.torchvision.faster_rcnn.backbones.resnet18_fpn(pretrained=True),
                                       num_classes=2)

state_dict = torch.load(checkpoint_path, map_location=torch.device('cpu'))
model.load_state_dict(state_dict)

infer_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(384),tfms.A.Normalize()])

# Definimos una función que se encarga de llevar a cabo las predicciones
def predict(img):
    img = PIL.Image.fromarray(img, "RGB")
    pred_dict =  models.torchvision.faster_rcnn.end2end_detect(img, infer_tfms, model.to("cpu"), class_map=ClassMap(['raccoon']), detection_threshold=0.5)
    return pred_dict["img"]
    
# Creamos la interfaz y la lanzamos. 
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=[gr.outputs.Image(type="pil", label="VFNet Inference")],
             examples=['raccoon1.jpg','raccoon2.jpg']).launch(share=False)