Spaces:
Runtime error
Runtime error
File size: 35,238 Bytes
5aefcf4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
Ticket Name: TDA2: ssd model import problem Query Text: Part Number: TDA2 Hi All, I have already confirmed that it works well on TDA2p EVM as below when running tidl usecase using the already converted model bin(NET_OD/PRM_OD) -. bbox : ok, display fps : ok(16fps) However, I confirmed that the bin(NET_OD, PRM_OD) changed through tild_model_import.out does not work as it did before. -. bbox: no, display fps : fail(8.4fps) Below is the problem log and import file file. Can you help me with what is wrong? modelImportIssue.zip My development environment is as follows. VSDK : 3.3.0.0 TIDLSRC: 1.1.1.0 bootmode ; SDBOOT EVM: tda2p protobuf ver : 3.2.0rc2 model: JDetNet Thank you in advance. BR, Khethan Responses: Hi Khethan, Can you please check with new vision SDK release version 03.05.00.00, if you still face the issue please share the generated NET.bin and PARAM.bin from import tool for verification. Thanks, Praveen Hi all I am sorry, It's take a long time to write back. I downloaded the version(3.5.0.0) you mentioned, but which is does not have a TIDL. The stats_tool_out.bin file created using my import tool has been confirmed to work normally as below. please refer my environment file. I would appreciate any help on what is wrong. modelImportIssue_2.zip BR, Khethan Hi Khethan, I did not see any issue with your import tool files, because I just now imported and verified that it is detecting objects properly. I used the import executable (tidl_model_import.out.exe) from latest TIDL 01.01.02.00 release. Can you please check with latest TIDL release? Thanks, Praveen Hi Praveen, I've just checked with the new version(1.1.2.0) you mentioned, but I still have problems. please refer my log file. import_tidl_1_1_2_0_log.txt Microsoft Windows [Version 6.1.7601] Copyright (c) 2009 Microsoft Corporation. All rights reserved. c:\PROCESSOR_SDK_VISION_03_03_00_00\ti_components\algorithms\REL.TIDLSRC.01.01.02.00\modules\ti_dl\utils\tidlModel Import>tidl_model_import.out.exe c:\PROCESSOR_SDK_VISION_03_03_00_00\ti_components\algorithms\REL.TIDLSRC.01.01.02 .00\modules\ti_dl\test\testvecs\config\import\tidl_import_JDetNet.txt Caffe Network File : d:\work\adas\TI\work_space\tidl\model\caffe_jacinto_models\trained\object_detection\voc0712\J DetNet\ssd768x320_ds_PSP_dsFac_32_hdDS8_0\sparse\deploy.prototxt Caffe Model File : d:\work\adas\TI\work_space\tidl\model\caffe_jacinto_models\trained\object_detection\voc0712\J DetNet\ssd768x320_ds_PSP_dsFac_32_hdDS8_0\sparse\voc0712_ssdJacintoNetV2_iter_120000.caffemodel TIDL Network File : ..\..\test\testvecs\config\tidl_models\jdetnet\tidl_net_jdetNet_ssd.bin TIDL Model File : ..\..\test\testvecs\config\tidl_models\jdetnet\tidl_param_jdetNet_ssd.bin Name of the Network : ssdJacintoNetV2_deploy Num Inputs : 1 Could not find detection_out Params Num of Layer Detected : 50 0, TIDL_DataLayer , data 0, -1 , 1 , x , x , x , x , x , x , x , x , 0 , 0 , 0 , 0 , 0 , 1 , 3 , 320 , 768 , 0 , 1, TIDL_BatchNormLayer , data/bias 1, 1 , 1 , 0 , x , x , x , x , x , x , x , 1 , 1 , 3 , 320 , 768 , 1 , 3 , 320 , 768 , 737280 , 2, TIDL_ConvolutionLayer , conv1a 1, 1 , 1 , 1 , x , x , x , x , x , x , x , 2 , 1 , 3 , 320 , 768 , 1 , 32 , 160 , 384 , 147456000 , 3, TIDL_ConvolutionLayer , conv1b 1, 1 , 1 , 2 , x , x , x , x , x , x , x , 3 , 1 , 32 , 160 , 384 , 1 , 32 , 80 , 192 , 141557760 , 4, TIDL_ConvolutionLayer , res2a_branch2a 1, 1 , 1 , 3 , x , x , x , x , x , x , x , 4 , 1 , 32 , 80 , 192 , 1 , 64 , 80 , 192 , 283115520 , 5, TIDL_ConvolutionLayer , res2a_branch2b 1, 1 , 1 , 4 , x , x , x , x , x , x , x , 5 , 1 , 64 , 80 , 192 , 1 , 64 , 40 , 96 , 141557760 , 6, TIDL_ConvolutionLayer , res3a_branch2a 1, 1 , 1 , 5 , x , x , x , x , x , x , x , 6 , 1 , 64 , 40 , 96 , 1 , 128 , 40 , 96 , 283115520 , 7, TIDL_ConvolutionLayer , res3a_branch2b 1, 1 , 1 , 6 , x , x , x , x , x , x , x , 7 , 1 , 128 , 40 , 96 , 1 , 128 , 20 , 48 , 141557760 , 8, TIDL_ConvolutionLayer , res4a_branch2a 1, 1 , 1 , 7 , x , x , x , x , x , x , x , 8 , 1 , 128 , 20 , 48 , 1 , 256 , 20 , 48 , 283115520 , 9, TIDL_ConvolutionLayer , res4a_branch2b 1, 1 , 1 , 8 , x , x , x , x , x , x , x , 9 , 1 , 256 , 20 , 48 , 1 , 256 , 20 , 48 , 141557760 , 10, TIDL_PoolingLayer , pool4 1, 1 , 1 , 9 , x , x , x , x , x , x , x , 10 , 1 , 256 , 20 , 48 , 1 , 256 , 10 , 24 , 245760 , 11, TIDL_ConvolutionLayer , res5a_branch2a 1, 1 , 1 , 10 , x , x , x , x , x , x , x , 11 , 1 , 256 , 10 , 24 , 1 , 512 , 10 , 24 , 283115520 , 12, TIDL_ConvolutionLayer , res5a_branch2b 1, 1 , 1 , 11 , x , x , x , x , x , x , x , 12 , 1 , 512 , 10 , 24 , 1 , 512 , 10 , 24 , 141557760 , 13, TIDL_PoolingLayer , pool6 1, 1 , 1 , 12 , x , x , x , x , x , x , x , 13 , 1 , 512 , 10 , 24 , 1 , 512 , 5 , 12 , 122880 , 14, TIDL_PoolingLayer , pool7 1, 1 , 1 , 13 , x , x , x , x , x , x , x , 14 , 1 , 512 , 5 , 12 , 1 , 512 , 3 , 6 , 36864 , 15, TIDL_PoolingLayer , pool8 1, 1 , 1 , 14 , x , x , x , x , x , x , x , 15 , 1 , 512 , 3 , 6 , 1 , 512 , 2 , 3 , 12288 , 16, TIDL_ConvolutionLayer , ctx_output1 1, 1 , 1 , 9 , x , x , x , x , x , x , x , 16 , 1 , 256 , 20 , 48 , 1 , 256 , 20 , 48 , 62914560 , 17, TIDL_ConvolutionLayer , ctx_output2 1, 1 , 1 , 12 , x , x , x , x , x , x , x , 17 , 1 , 512 , 10 , 24 , 1 , 256 , 10 , 24 , 31457280 , 18, TIDL_ConvolutionLayer , ctx_output3 1, 1 , 1 , 13 , x , x , x , x , x , x , x , 18 , 1 , 512 , 5 , 12 , 1 , 256 , 5 , 12 , 7864320 , 19, TIDL_ConvolutionLayer , ctx_output4 1, 1 , 1 , 14 , x , x , x , x , x , x , x , 19 , 1 , 512 , 3 , 6 , 1 , 256 , 3 , 6 , 2359296 , 20, TIDL_ConvolutionLayer , ctx_output5 1, 1 , 1 , 15 , x , x , x , x , x , x , x , 20 , 1 , 512 , 2 , 3 , 1 , 256 , 2 , 3 , 786432 , 21, TIDL_ConvolutionLayer , ctx_output1/relu_mbox_loc 1, 1 , 1 , 16 , x , x , x , x , x , x , x , 21 , 1 , 256 , 20 , 48 , 1 , 16 , 20 , 48 , 3932160 , 22, TIDL_FlattenLayer , ctx_output1/relu_mbox_loc_perm 1, 1 , 1 , 21 , x , x , x , x , x , x , x , 22 , 1 , 16 , 20 , 48 , 1 , 1 , 1 , 15360 , 1 , 23, TIDL_ConvolutionLayer , ctx_output1/relu_mbox_conf 1, 1 , 1 , 16 , x , x , x , x , x , x , x , 23 , 1 , 256 , 20 , 48 , 1 , 84 , 20 , 48 , 20643840 , 24, TIDL_FlattenLayer , ctx_output1/relu_mbox_conf_perm 1, 1 , 1 , 23 , x , x , x , x , x , x , x , 24 , 1 , 84 , 20 , 48 , 1 , 1 , 1 , 80640 , 1 , 26, TIDL_ConvolutionLayer , ctx_output2/relu_mbox_loc 1, 1 , 1 , 17 , x , x , x , x , x , x , x , 26 , 1 , 256 , 10 , 24 , 1 , 24 , 10 , 24 , 1474560 , 27, TIDL_FlattenLayer , ctx_output2/relu_mbox_loc_perm 1, 1 , 1 , 26 , x , x , x , x , x , x , x , 27 , 1 , 24 , 10 , 24 , 1 , 1 , 1 , 5760 , 1 , 28, TIDL_ConvolutionLayer , ctx_output2/relu_mbox_conf 1, 1 , 1 , 17 , x , x , x , x , x , x , x , 28 , 1 , 256 , 10 , 24 , 1 , 126 , 10 , 24 , 7741440 , 29, TIDL_FlattenLayer , ctx_output2/relu_mbox_conf_perm 1, 1 , 1 , 28 , x , x , x , x , x , x , x , 29 , 1 , 126 , 10 , 24 , 1 , 1 , 1 , 30240 , 1 , 31, TIDL_ConvolutionLayer , ctx_output3/relu_mbox_loc 1, 1 , 1 , 18 , x , x , x , x , x , x , x , 31 , 1 , 256 , 5 , 12 , 1 , 24 , 5 , 12 , 368640 , 32, TIDL_FlattenLayer , ctx_output3/relu_mbox_loc_perm 1, 1 , 1 , 31 , x , x , x , x , x , x , x , 32 , 1 , 24 , 5 , 12 , 1 , 1 , 1 , 1440 , 1 , 33, TIDL_ConvolutionLayer , ctx_output3/relu_mbox_conf 1, 1 , 1 , 18 , x , x , x , x , x , x , x , 33 , 1 , 256 , 5 , 12 , 1 , 126 , 5 , 12 , 1935360 , 34, TIDL_FlattenLayer , ctx_output3/relu_mbox_conf_perm 1, 1 , 1 , 33 , x , x , x , x , x , x , x , 34 , 1 , 126 , 5 , 12 , 1 , 1 , 1 , 7560 , 1 , 36, TIDL_ConvolutionLayer , ctx_output4/relu_mbox_loc 1, 1 , 1 , 19 , x , x , x , x , x , x , x , 36 , 1 , 256 , 3 , 6 , 1 , 24 , 3 , 6 , 110592 , 37, TIDL_FlattenLayer , ctx_output4/relu_mbox_loc_perm 1, 1 , 1 , 36 , x , x , x , x , x , x , x , 37 , 1 , 24 , 3 , 6 , 1 , 1 , 1 , 432 , 1 , 38, TIDL_ConvolutionLayer , ctx_output4/relu_mbox_conf 1, 1 , 1 , 19 , x , x , x , x , x , x , x , 38 , 1 , 256 , 3 , 6 , 1 , 126 , 3 , 6 , 580608 , 39, TIDL_FlattenLayer , ctx_output4/relu_mbox_conf_perm 1, 1 , 1 , 38 , x , x , x , x , x , x , x , 39 , 1 , 126 , 3 , 6 , 1 , 1 , 1 , 2268 , 1 , 41, TIDL_ConvolutionLayer , ctx_output5/relu_mbox_loc 1, 1 , 1 , 20 , x , x , x , x , x , x , x , 41 , 1 , 256 , 2 , 3 , 1 , 16 , 2 , 3 , 24576 , 42, TIDL_FlattenLayer , ctx_output5/relu_mbox_loc_perm 1, 1 , 1 , 41 , x , x , x , x , x , x , x , 42 , 1 , 16 , 2 , 3 , 1 , 1 , 1 , 96 , 1 , 43, TIDL_ConvolutionLayer , ctx_output5/relu_mbox_conf 1, 1 , 1 , 20 , x , x , x , x , x , x , x , 43 , 1 , 256 , 2 , 3 , 1 , 84 , 2 , 3 , 129024 , 44, TIDL_FlattenLayer , ctx_output5/relu_mbox_conf_perm 1, 1 , 1 , 43 , x , x , x , x , x , x , x , 44 , 1 , 84 , 2 , 3 , 1 , 1 , 1 , 504 , 1 , 46, TIDL_ConcatLayer , mbox_loc 1, 5 , 1 , 22 , 27 , 32 , 37 , 42 , x , x , x , 46 , 1 , 1 , 1 , 15360 , 1 , 1 , 1 , 23088 , 1 , 47, TIDL_ConcatLayer , mbox_conf 1, 5 , 1 , 24 , 29 , 34 , 39 , 44 , x , x , x , 47 , 1 , 1 , 1 , 80640 , 1 , 1 , 1 , 121212 , 1 , 49, TIDL_DetectionOutputLayer , detection_out 2, 2 , 1 , 46 , 47 , x , x , x , x , x , x , 49 , 1 , 1 , 1 , 23088 , 1 , 1 , 1 , 560 , 1 , Total Giga Macs : 2.1312 1개 파일이 복사되었습니다. Processing config file .\tempDir\qunat_stats_config.txt ! 0, TIDL_DataLayer , 0, -1 , 1 , x , x , x , x , x , x , x , x , 0 , 0 , 0 , 0 , 0 , 1 , 3 , 320 , 768 , 1, TIDL_BatchNormLayer , 1, 1 , 1 , 0 , x , x , x , x , x , x , x , 1 , 1 , 3 , 32 0 , 768 , 1 , 3 , 320 , 768 , 2, TIDL_ConvolutionLayer , 1, 1 , 1 , 1 , x , x , x , x , x , x , x , 2 , 1 , 3 , 32 0 , 768 , 1 , 32 , 160 , 384 , 3, TIDL_ConvolutionLayer , 1, 1 , 1 , 2 , x , x , x , x , x , x , x , 3 , 1 , 32 , 16 0 , 384 , 1 , 32 , 80 , 192 , 4, TIDL_ConvolutionLayer , 1, 1 , 1 , 3 , x , x , x , x , x , x , x , 4 , 1 , 32 , 8 0 , 192 , 1 , 64 , 80 , 192 , 5, TIDL_ConvolutionLayer , 1, 1 , 1 , 4 , x , x , x , x , x , x , x , 5 , 1 , 64 , 8 0 , 192 , 1 , 64 , 40 , 96 , 6, TIDL_ConvolutionLayer , 1, 1 , 1 , 5 , x , x , x , x , x , x , x , 6 , 1 , 64 , 4 0 , 96 , 1 , 128 , 40 , 96 , 7, TIDL_ConvolutionLayer , 1, 1 , 1 , 6 , x , x , x , x , x , x , x , 7 , 1 , 128 , 4 0 , 96 , 1 , 128 , 20 , 48 , 8, TIDL_ConvolutionLayer , 1, 1 , 1 , 7 , x , x , x , x , x , x , x , 8 , 1 , 128 , 2 0 , 48 , 1 , 256 , 20 , 48 , 9, TIDL_ConvolutionLayer , 1, 1 , 1 , 8 , x , x , x , x , x , x , x , 9 , 1 , 256 , 2 0 , 48 , 1 , 256 , 20 , 48 , 10, TIDL_PoolingLayer , 1, 1 , 1 , 9 , x , x , x , x , x , x , x , 10 , 1 , 256 , 2 0 , 48 , 1 , 256 , 10 , 24 , 11, TIDL_ConvolutionLayer , 1, 1 , 1 , 10 , x , x , x , x , x , x , x , 11 , 1 , 256 , 1 0 , 24 , 1 , 512 , 10 , 24 , 12, TIDL_ConvolutionLayer , 1, 1 , 1 , 11 , x , x , x , x , x , x , x , 12 , 1 , 512 , 1 0 , 24 , 1 , 512 , 10 , 24 , 13, TIDL_PoolingLayer , 1, 1 , 1 , 12 , x , x , x , x , x , x , x , 13 , 1 , 512 , 1 0 , 24 , 1 , 512 , 5 , 12 , 14, TIDL_PoolingLayer , 1, 1 , 1 , 13 , x , x , x , x , x , x , x , 14 , 1 , 512 , 5 , 12 , 1 , 512 , 3 , 6 , 15, TIDL_PoolingLayer , 1, 1 , 1 , 14 , x , x , x , x , x , x , x , 15 , 1 , 512 , 3 , 6 , 1 , 512 , 2 , 3 , 16, TIDL_ConvolutionLayer , 1, 1 , 1 , 9 , x , x , x , x , x , x , x , 16 , 1 , 256 , 2 0 , 48 , 1 , 256 , 20 , 48 , 17, TIDL_ConvolutionLayer , 1, 1 , 1 , 12 , x , x , x , x , x , x , x , 17 , 1 , 512 , 1 0 , 24 , 1 , 256 , 10 , 24 , 18, TIDL_ConvolutionLayer , 1, 1 , 1 , 13 , x , x , x , x , x , x , x , 18 , 1 , 512 , 5 , 12 , 1 , 256 , 5 , 12 , 19, TIDL_ConvolutionLayer , 1, 1 , 1 , 14 , x , x , x , x , x , x , x , 19 , 1 , 512 , 3 , 6 , 1 , 256 , 3 , 6 , 20, TIDL_ConvolutionLayer , 1, 1 , 1 , 15 , x , x , x , x , x , x , x , 20 , 1 , 512 , 2 , 3 , 1 , 256 , 2 , 3 , 21, TIDL_ConvolutionLayer , 1, 1 , 1 , 16 , x , x , x , x , x , x , x , 21 , 1 , 256 , 2 0 , 48 , 1 , 16 , 20 , 48 , 22, TIDL_FlattenLayer , 1, 1 , 1 , 21 , x , x , x , x , x , x , x , 22 , 1 , 16 , 2 0 , 48 , 1 , 1 , 1 ,15360 , 23, TIDL_ConvolutionLayer , 1, 1 , 1 , 16 , x , x , x , x , x , x , x , 23 , 1 , 256 , 2 0 , 48 , 1 , 84 , 20 , 48 , 24, TIDL_FlattenLayer , 1, 1 , 1 , 23 , x , x , x , x , x , x , x , 24 , 1 , 84 , 2 0 , 48 , 1 , 1 , 1 ,80640 , 25, TIDL_ConvolutionLayer , 1, 1 , 1 , 17 , x , x , x , x , x , x , x , 26 , 1 , 256 , 1 0 , 24 , 1 , 24 , 10 , 24 , 26, TIDL_FlattenLayer , 1, 1 , 1 , 26 , x , x , x , x , x , x , x , 27 , 1 , 24 , 1 0 , 24 , 1 , 1 , 1 , 5760 , 27, TIDL_ConvolutionLayer , 1, 1 , 1 , 17 , x , x , x , x , x , x , x , 28 , 1 , 256 , 1 0 , 24 , 1 , 126 , 10 , 24 , 28, TIDL_FlattenLayer , 1, 1 , 1 , 28 , x , x , x , x , x , x , x , 29 , 1 , 126 , 1 0 , 24 , 1 , 1 , 1 ,30240 , 29, TIDL_ConvolutionLayer , 1, 1 , 1 , 18 , x , x , x , x , x , x , x , 31 , 1 , 256 , 5 , 12 , 1 , 24 , 5 , 12 , 30, TIDL_FlattenLayer , 1, 1 , 1 , 31 , x , x , x , x , x , x , x , 32 , 1 , 24 , 5 , 12 , 1 , 1 , 1 , 1440 , 31, TIDL_ConvolutionLayer , 1, 1 , 1 , 18 , x , x , x , x , x , x , x , 33 , 1 , 256 , 5 , 12 , 1 , 126 , 5 , 12 , 32, TIDL_FlattenLayer , 1, 1 , 1 , 33 , x , x , x , x , x , x , x , 34 , 1 , 126 , 5 , 12 , 1 , 1 , 1 , 7560 , 33, TIDL_ConvolutionLayer , 1, 1 , 1 , 19 , x , x , x , x , x , x , x , 36 , 1 , 256 , 3 , 6 , 1 , 24 , 3 , 6 , 34, TIDL_FlattenLayer , 1, 1 , 1 , 36 , x , x , x , x , x , x , x , 37 , 1 , 24 , 3 , 6 , 1 , 1 , 1 , 432 , 35, TIDL_ConvolutionLayer , 1, 1 , 1 , 19 , x , x , x , x , x , x , x , 38 , 1 , 256 , 3 , 6 , 1 , 126 , 3 , 6 , 36, TIDL_FlattenLayer , 1, 1 , 1 , 38 , x , x , x , x , x , x , x , 39 , 1 , 126 , 3 , 6 , 1 , 1 , 1 , 2268 , 37, TIDL_ConvolutionLayer , 1, 1 , 1 , 20 , x , x , x , x , x , x , x , 41 , 1 , 256 , 2 , 3 , 1 , 16 , 2 , 3 , 38, TIDL_FlattenLayer , 1, 1 , 1 , 41 , x , x , x , x , x , x , x , 42 , 1 , 16 , 2 , 3 , 1 , 1 , 1 , 96 , 39, TIDL_ConvolutionLayer , 1, 1 , 1 , 20 , x , x , x , x , x , x , x , 43 , 1 , 256 , 2 , 3 , 1 , 84 , 2 , 3 , 40, TIDL_FlattenLayer , 1, 1 , 1 , 43 , x , x , x , x , x , x , x , 44 , 1 , 84 , 2 , 3 , 1 , 1 , 1 , 504 , 41, TIDL_ConcatLayer , 1, 5 , 1 , 22 , 27 , 32 , 37 , 42 , x , x , x , 46 , 1 , 1 , 1 ,15360 , 1 , 1 , 1 ,23088 , 42, TIDL_ConcatLayer , 1, 5 , 1 , 24 , 29 , 34 , 39 , 44 , x , x , x , 47 , 1 , 1 , 1 ,80640 , 1 , 1 , 1 ,121212 , 43, TIDL_DetectionOutputLayer , 1, 2 , 1 , 46 , 47 , x , x , x , x , x , x , 49 , 1 , 1 , 1 ,23088 , 1 , 1 , 1 , 560 , 44, TIDL_DataLayer , 0, 1 , -1 , 49 , x , x , x , x , x , x , x , 0 , 1 , 1 , 1 , 560 , 0 , 0 , 0 , 0 , Layer ID ,inBlkWidth ,inBlkHeight ,inBlkPitch ,outBlkWidth ,outBlkHeight,outBlkPitch ,numInChs ,numOutChs ,numProcInChs,numLclInChs ,numLclOutChs,numProcItrs ,numAccItrs ,numHorBlock ,numVerBlock ,inBlkChPitch,outBlkC hPitc,alignOrNot 2 72 72 72 32 32 32 3 32 3 1 8 1 3 12 5 5184 1024 1 3 40 34 40 32 32 32 8 8 8 4 8 1 2 12 5 1360 1024 1 4 40 22 40 32 20 32 32 64 32 8 8 1 4 6 4 880 640 1 5 40 22 40 32 20 32 16 16 16 8 8 1 2 6 4 880 640 1 6 40 22 40 32 20 32 64 128 64 8 8 1 8 3 2 880 640 1 7 40 22 40 32 20 32 32 32 32 8 8 1 4 3 2 880 640 1 8 56 22 56 48 20 48 128 256 128 7 8 1 19 1 1 1232 960 1 9 56 22 56 48 20 48 64 64 64 7 8 1 10 1 1 1232 960 1 11 40 12 40 32 10 32 256 512 256 8 8 1 32 1 1 480 320 1 12 40 12 40 32 10 32 128 128 128 8 8 1 16 1 1 480 320 1 16 48 4 48 48 4 48 256 256 256 32 8 1 8 1 5 192 192 1 17 24 10 24 24 10 24 512 256 512 32 32 1 16 1 1 240 240 1 18 12 5 12 12 5 12 512 256 512 32 32 1 16 1 1 60 60 1 19 6 3 6 6 3 6 512 256 512 32 32 1 16 1 1 18 18 1 20 3 2 3 3 2 3 512 256 512 32 32 1 16 1 1 6 6 1 21 48 4 48 48 4 48 256 16 256 32 8 1 8 1 5 192 192 1 23 48 4 48 48 4 48 256 88 256 32 8 1 8 1 5 192 192 1 25 24 10 24 24 10 24 256 24 256 32 24 1 8 1 1 240 240 1 27 24 10 24 24 10 24 256 128 256 32 32 1 8 1 1 240 240 1 29 12 5 12 12 5 12 256 24 256 32 24 1 8 1 1 60 60 1 31 12 5 12 12 5 12 256 128 256 32 32 1 8 1 1 60 60 1 33 6 3 6 6 3 6 256 24 256 32 24 1 8 1 1 18 18 1 35 6 3 6 6 3 6 256 128 256 32 32 1 8 1 1 18 18 1 37 3 2 3 3 2 3 256 16 256 32 16 1 8 1 1 6 6 1 39 3 2 3 3 2 3 256 96 256 32 32 1 8 1 1 6 6 1 Processing Frame Number : 0 Layer 1 : Out Q : 254 , TIDL_BatchNormLayer , PASSED #MMACs = 0.74, 0.74, Sparsity : 0.00 Layer 2 : Out Q : 4787 , TIDL_ConvolutionLayer, PASSED #MMACs = 147.46, 92.65, Sparsity : 37.17 Layer 3 : Out Q : 4230 , TIDL_ConvolutionLayer, PASSED #MMACs = 141.56, 53.33, Sparsity : 62.33 Layer 4 : Out Q : 7280 , TIDL_ConvolutionLayer, PASSED #MMACs = 283.12, 83.44, Sparsity : 70.53 Layer 5 : Out Q : 10223 , TIDL_ConvolutionLayer, PASSED #MMACs = 141.56, 66.11, Sparsity : 53.30 Layer 6 : Out Q : 8988 , TIDL_ConvolutionLayer, PASSED #MMACs = 283.12, 91.59, Sparsity : 67.65 Layer 7 : Out Q : 10923 , TIDL_ConvolutionLayer, PASSED #MMACs = 141.56, 57.32, Sparsity : 59.51 Layer 8 : Out Q : 20852 , TIDL_ConvolutionLayer, PASSED #MMACs = 283.12, 96.27, Sparsity : 66.00 Layer 9 : Out Q : 18101 , TIDL_ConvolutionLayer, PASSED #MMACs = 141.56, 52.28, Sparsity : 63.07 Layer 10 :TIDL_PoolingLayer, PASSED #MMACs = 0.06, 0.06, Sparsity : 0.00 Layer 11 : Out Q : 27171 , TIDL_ConvolutionLayer, PASSED #MMACs = 283.12, 76.31, Sparsity : 73.04 Layer 12 : Out Q : 5405 , TIDL_ConvolutionLayer, PASSED #MMACs = 141.56, 31.40, Sparsity : 77.82 Layer 13 :TIDL_PoolingLayer, PASSED #MMACs = 0.03, 0.03, Sparsity : 0.00 Layer 14 :TIDL_PoolingLayer, PASSED #MMACs = 0.01, 0.01, Sparsity : 0.00 Layer 15 :TIDL_PoolingLayer, PASSED #MMACs = 0.00, 0.00, Sparsity : 0.00 Layer 16 : Out Q : 15924 , TIDL_ConvolutionLayer, PASSED #MMACs = 62.91, 62.91, Sparsity : 0.00 Layer 17 : Out Q : 10177 , TIDL_ConvolutionLayer, PASSED #MMACs = 31.46, 31.46, Sparsity : 0.00 Layer 18 : Out Q : 14028 , TIDL_ConvolutionLayer, PASSED #MMACs = 7.86, 7.86, Sparsity : 0.00 Layer 19 : Out Q : 17569 , TIDL_ConvolutionLayer, PASSED #MMACs = 2.36, 2.36, Sparsity : 0.00 Layer 20 : Out Q : 26121 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.79, 0.79, Sparsity : 0.00 Layer 21 : Out Q : 4366 , TIDL_ConvolutionLayer, PASSED #MMACs = 3.93, 3.93, Sparsity : 0.00 Layer 22 :TIDL_FlattenLayer, PASSED #MMACs = 0.02, 0.02, Sparsity : 0.00 Layer 23 : Out Q : 3862 , TIDL_ConvolutionLayer, PASSED #MMACs = 21.63, 21.63, Sparsity : 0.00 Layer 24 :TIDL_FlattenLayer, PASSED #MMACs = 0.08, 0.08, Sparsity : 0.00 Layer 25 : Out Q : 5460 , TIDL_ConvolutionLayer, PASSED #MMACs = 1.47, 1.47, Sparsity : 0.00 Layer 26 :TIDL_FlattenLayer, PASSED #MMACs = 0.01, 0.01, Sparsity : 0.00 Layer 27 : Out Q : 2597 , TIDL_ConvolutionLayer, PASSED #MMACs = 7.86, 7.86, Sparsity : 0.00 Layer 28 :TIDL_FlattenLayer, PASSED #MMACs = 0.03, 0.03, Sparsity : 0.00 Layer 29 : Out Q : 6983 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.37, 0.37, Sparsity : 0.00 Layer 30 :TIDL_FlattenLayer, PASSED #MMACs = 0.00, 0.00, Sparsity : 0.00 Layer 31 : Out Q : 2508 , TIDL_ConvolutionLayer, PASSED #MMACs = 1.97, 1.97, Sparsity : 0.00 Layer 32 :TIDL_FlattenLayer, PASSED #MMACs = 0.01, 0.01, Sparsity : 0.00 Layer 33 : Out Q : 9470 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.11, 0.11, Sparsity : 0.00 Layer 34 :TIDL_FlattenLayer, PASSED #MMACs = 0.00, 0.00, Sparsity : 0.00 Layer 35 : Out Q : 3264 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.59, 0.59, Sparsity : 0.00 Layer 36 :TIDL_FlattenLayer, PASSED #MMACs = 0.00, 0.00, Sparsity : 0.00 Layer 37 : Out Q : 8417 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.02, 0.02, Sparsity : 0.00 Layer 38 :TIDL_FlattenLayer, PASSED #MMACs = 0.00, 0.00, Sparsity : 0.00 Layer 39 : Out Q : 3940 , TIDL_ConvolutionLayer, PASSED #MMACs = 0.15, 0.15, Sparsity : 0.00 Layer 40 :TIDL_FlattenLayer, PASSED #MMACs = 0.00, 0.00, Sparsity : 0.00 Layer 41 : Out Q : 4383 , TIDL_ConcatLayer, PASSED #MMACs = 0.00, 0.00, Sparsity : -1.#J Layer 42 : Out Q : 2518 , TIDL_ConcatLayer, PASSED #MMACs = 0.00, 0.00, Sparsity : -1.#J Layer 43 : #MMACs = 0.00, 0.00, Sparsity : 0.00 End of config list found ! c:\PROCESSOR_SDK_VISION_03_03_00_00\ti_components\algorithms\REL.TIDLSRC.01.01.02.00\modules\ti_dl\utils\tidlModel Import> What else should I check? Thank you for your help. BR, Khethan Hi Khethan, Can you share your output ? Thanks, Praveen Hi Praveen, Here I attach the output for the input. tempDir.zip BR, Khethan Hi Praveen, I have tested on TDA2P EVM, but the output data is initialized as below attachment files. evm_output.zip This phenomenon seems to be the same in PC simulation mode. As mentioned earlier, if I use eve_test_dl_algo.out.exe, which is included in the package by default, the output is very good. The TIDL build was referenced in the TIDeepLearningLibrary_UserGuide.pdf document. BR, Khethan Hi Praveen, I tried to compile eve and dsp again with TIDL_SRC(1.1.2), and confirmed that the generated file (dsp_test_dl_algo.out, eve_test_dl_algo.out) works fine on EVM through CCS as output file(stats_tool_out.bin). However, when I execute the same model file with "tidl od usecase" in EVM(sd_boot), the video is played but the bbox is not displayed. please refer my data. eve_data_log.zip I would appreciate your advice on what went wrong. BR, Khethan Hi Khethan, Were you able get TIDL Usecase working as is from release package? Thanks, Praveen Hi Praveen, The package(3.3.0.0) which i use current was not supported TIDL usecase for TDA2P, but I confirmed that it works well after modifying the chain etc with reference to TDA2X. Regarding above issue, It was related to layersGroupId valule in tidl_import_JDetNex.txt. When I values just change as below regardless of version, the problem was solved. before: layersGroupId = 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 0 conv2dKernelType = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 after: layersGroupId = 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 2 0 conv2dKernelType = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 But there was another problem. 1. When tidl usecase is executed, bbox is not displayed from the beginning and box is displayed from about 20sec of video. 2. When video(inData and inHeader) are replaced with mine, frame is played at 1 ~ 2fps slowly, resulting in frame reversal. the Problem is not reproduced when using ti demo clip. I made this clip using the program(ffmpeg&ffprobe&sizeBin) and It seem like to have no problem. BR, Khethan Hi Praveen #1 I have reduced the time to 6sec by adjusting parameters( quantHistoryParam1 / 2 and quantMargin) as below. 20, 5, 0 -> 40, 40, 40 Is there any problem using this value? How can we reduce the lead time further? I have read for the doc(tidl user guide) for parameter but I do not understand it enough. could you please explain about the parameter in detail(unit.etc) #2 The attached log file does not seem to be a problem. revers_sym_log.txt Referencing TIDeepLearningLibrary_UserGuide.pdf 3.7 (Input and Output Data Formats), clip format is below. right? width: 760(video)+4(MAX_PAD), height; 312(video)+4(MAX_PAD) If it is not related to it, What should I do ? BR, Khethan I am sorry, The clip size should be modified as follows due to my mistake width: 760(video)+2*4(MAX_PAD), height; 312(video)+2*4(MAX_PAD) BR, Khethan Hi Khethan, #1 The lead time can not be reduced by changing these quant parameters, these parameters are used to improve the accuracy, I explained these parameters in detail below, In TIDL, we use the current computation of min and max to update the quantization parameters for next frame. We don’t directly use it in the next frame, we gradually update. This quantHistoryParam1 / 2 and quantMargin values are used to control, how fast we need update the quantization parameter. If quantHistoryParam1 / 2 are higher than the update will happen faster. QuantMargin controls the margin that would want for max to grow. #2 Yes, this padding is correct Thanks, Praveen Hi Praveen, My issue was solved Thank you for your support. BR, Khethan |