File size: 35,238 Bytes
5aefcf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
Ticket Name: TDA2: ssd model import problem

Query Text:
Part Number: TDA2 Hi All, I have already confirmed that it works well on TDA2p EVM as below when running tidl usecase using the already converted model bin(NET_OD/PRM_OD) -. bbox : ok, display fps : ok(16fps) However, I confirmed that the bin(NET_OD, PRM_OD) changed through tild_model_import.out does not work as it did before. -. bbox: no, display fps : fail(8.4fps) Below is the problem log and import file file. Can you help me with what is wrong? modelImportIssue.zip My development environment is as follows. VSDK : 3.3.0.0 TIDLSRC: 1.1.1.0 bootmode ; SDBOOT EVM: tda2p protobuf ver : 3.2.0rc2 model: JDetNet Thank you in advance. BR, Khethan

Responses:
Hi Khethan, Can you please check with new vision SDK release version 03.05.00.00, if you still face the issue please share the generated NET.bin and PARAM.bin from import tool for verification. Thanks, Praveen

Hi all I am sorry, It's take a long time to write back. I downloaded the version(3.5.0.0) you mentioned, but which is does not have a TIDL. The stats_tool_out.bin file created using my import tool has been confirmed to work normally as below. please refer my environment file. I would appreciate any help on what is wrong. modelImportIssue_2.zip BR, Khethan

Hi Khethan, I did not see any issue with your import tool files, because I just now imported and verified that it is detecting objects properly. I used the import executable (tidl_model_import.out.exe) from latest TIDL 01.01.02.00 release. Can you please check with latest TIDL release? Thanks, Praveen

Hi Praveen, I've just checked with the new version(1.1.2.0) you mentioned, but I still have problems. please refer my log file. import_tidl_1_1_2_0_log.txt Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.

c:\PROCESSOR_SDK_VISION_03_03_00_00\ti_components\algorithms\REL.TIDLSRC.01.01.02.00\modules\ti_dl\utils\tidlModel
Import>tidl_model_import.out.exe c:\PROCESSOR_SDK_VISION_03_03_00_00\ti_components\algorithms\REL.TIDLSRC.01.01.02
.00\modules\ti_dl\test\testvecs\config\import\tidl_import_JDetNet.txt
Caffe Network File : d:\work\adas\TI\work_space\tidl\model\caffe_jacinto_models\trained\object_detection\voc0712\J
DetNet\ssd768x320_ds_PSP_dsFac_32_hdDS8_0\sparse\deploy.prototxt
Caffe Model File   : d:\work\adas\TI\work_space\tidl\model\caffe_jacinto_models\trained\object_detection\voc0712\J
DetNet\ssd768x320_ds_PSP_dsFac_32_hdDS8_0\sparse\voc0712_ssdJacintoNetV2_iter_120000.caffemodel
TIDL Network File  : ..\..\test\testvecs\config\tidl_models\jdetnet\tidl_net_jdetNet_ssd.bin
TIDL Model File    : ..\..\test\testvecs\config\tidl_models\jdetnet\tidl_param_jdetNet_ssd.bin
Name of the Network : ssdJacintoNetV2_deploy
Num Inputs :               1
Could not find detection_out Params
 Num of Layer Detected :  50
  0, TIDL_DataLayer                , data                                      0,  -1 ,  1 ,   x ,  x ,  x ,  x ,
 x ,  x ,  x ,  x ,  0 ,       0 ,       0 ,       0 ,       0 ,       1 ,       3 ,     320 ,     768 ,         0
 ,
  1, TIDL_BatchNormLayer           , data/bias                                 1,   1 ,  1 ,   0 ,  x ,  x ,  x ,
 x ,  x ,  x ,  x ,  1 ,       1 ,       3 ,     320 ,     768 ,       1 ,       3 ,     320 ,     768 ,    737280
 ,
  2, TIDL_ConvolutionLayer         , conv1a                                    1,   1 ,  1 ,   1 ,  x ,  x ,  x ,
 x ,  x ,  x ,  x ,  2 ,       1 ,       3 ,     320 ,     768 ,       1 ,      32 ,     160 ,     384 , 147456000
 ,
  3, TIDL_ConvolutionLayer         , conv1b                                    1,   1 ,  1 ,   2 ,  x ,  x ,  x ,
 x ,  x ,  x ,  x ,  3 ,       1 ,      32 ,     160 ,     384 ,       1 ,      32 ,      80 ,     192 , 141557760
 ,
  4, TIDL_ConvolutionLayer         , res2a_branch2a                            1,   1 ,  1 ,   3 ,  x ,  x ,  x ,
 x ,  x ,  x ,  x ,  4 ,       1 ,      32 ,      80 ,     192 ,       1 ,      64 ,      80 ,     192 , 283115520
 ,
  5, TIDL_ConvolutionLayer         , res2a_branch2b                            1,   1 ,  1 ,   4 ,  x ,  x ,  x ,
 x ,  x ,  x ,  x ,  5 ,       1 ,      64 ,      80 ,     192 ,       1 ,      64 ,      40 ,      96 , 141557760
 ,
  6, TIDL_ConvolutionLayer         , res3a_branch2a                            1,   1 ,  1 ,   5 ,  x ,  x ,  x ,
 x ,  x ,  x ,  x ,  6 ,       1 ,      64 ,      40 ,      96 ,       1 ,     128 ,      40 ,      96 , 283115520
 ,
  7, TIDL_ConvolutionLayer         , res3a_branch2b                            1,   1 ,  1 ,   6 ,  x ,  x ,  x ,
 x ,  x ,  x ,  x ,  7 ,       1 ,     128 ,      40 ,      96 ,       1 ,     128 ,      20 ,      48 , 141557760
 ,
  8, TIDL_ConvolutionLayer         , res4a_branch2a                            1,   1 ,  1 ,   7 ,  x ,  x ,  x ,
 x ,  x ,  x ,  x ,  8 ,       1 ,     128 ,      20 ,      48 ,       1 ,     256 ,      20 ,      48 , 283115520
 ,
  9, TIDL_ConvolutionLayer         , res4a_branch2b                            1,   1 ,  1 ,   8 ,  x ,  x ,  x ,
 x ,  x ,  x ,  x ,  9 ,       1 ,     256 ,      20 ,      48 ,       1 ,     256 ,      20 ,      48 , 141557760
 ,
 10, TIDL_PoolingLayer             , pool4                                     1,   1 ,  1 ,   9 ,  x ,  x ,  x ,
 x ,  x ,  x ,  x , 10 ,       1 ,     256 ,      20 ,      48 ,       1 ,     256 ,      10 ,      24 ,    245760
 ,
 11, TIDL_ConvolutionLayer         , res5a_branch2a                            1,   1 ,  1 ,  10 ,  x ,  x ,  x ,
 x ,  x ,  x ,  x , 11 ,       1 ,     256 ,      10 ,      24 ,       1 ,     512 ,      10 ,      24 , 283115520
 ,
 12, TIDL_ConvolutionLayer         , res5a_branch2b                            1,   1 ,  1 ,  11 ,  x ,  x ,  x ,
 x ,  x ,  x ,  x , 12 ,       1 ,     512 ,      10 ,      24 ,       1 ,     512 ,      10 ,      24 , 141557760
 ,
 13, TIDL_PoolingLayer             , pool6                                     1,   1 ,  1 ,  12 ,  x ,  x ,  x ,
 x ,  x ,  x ,  x , 13 ,       1 ,     512 ,      10 ,      24 ,       1 ,     512 ,       5 ,      12 ,    122880
 ,
 14, TIDL_PoolingLayer             , pool7                                     1,   1 ,  1 ,  13 ,  x ,  x ,  x ,
 x ,  x ,  x ,  x , 14 ,       1 ,     512 ,       5 ,      12 ,       1 ,     512 ,       3 ,       6 ,     36864
 ,
 15, TIDL_PoolingLayer             , pool8                                     1,   1 ,  1 ,  14 ,  x ,  x ,  x ,
 x ,  x ,  x ,  x , 15 ,       1 ,     512 ,       3 ,       6 ,       1 ,     512 ,       2 ,       3 ,     12288
 ,
 16, TIDL_ConvolutionLayer         , ctx_output1                               1,   1 ,  1 ,   9 ,  x ,  x ,  x ,
 x ,  x ,  x ,  x , 16 ,       1 ,     256 ,      20 ,      48 ,       1 ,     256 ,      20 ,      48 ,  62914560
 ,
 17, TIDL_ConvolutionLayer         , ctx_output2                               1,   1 ,  1 ,  12 ,  x ,  x ,  x ,
 x ,  x ,  x ,  x , 17 ,       1 ,     512 ,      10 ,      24 ,       1 ,     256 ,      10 ,      24 ,  31457280
 ,
 18, TIDL_ConvolutionLayer         , ctx_output3                               1,   1 ,  1 ,  13 ,  x ,  x ,  x ,
 x ,  x ,  x ,  x , 18 ,       1 ,     512 ,       5 ,      12 ,       1 ,     256 ,       5 ,      12 ,   7864320
 ,
 19, TIDL_ConvolutionLayer         , ctx_output4                               1,   1 ,  1 ,  14 ,  x ,  x ,  x ,
 x ,  x ,  x ,  x , 19 ,       1 ,     512 ,       3 ,       6 ,       1 ,     256 ,       3 ,       6 ,   2359296
 ,
 20, TIDL_ConvolutionLayer         , ctx_output5                               1,   1 ,  1 ,  15 ,  x ,  x ,  x ,
 x ,  x ,  x ,  x , 20 ,       1 ,     512 ,       2 ,       3 ,       1 ,     256 ,       2 ,       3 ,    786432
 ,
 21, TIDL_ConvolutionLayer         , ctx_output1/relu_mbox_loc                 1,   1 ,  1 ,  16 ,  x ,  x ,  x ,
 x ,  x ,  x ,  x , 21 ,       1 ,     256 ,      20 ,      48 ,       1 ,      16 ,      20 ,      48 ,   3932160
 ,
 22, TIDL_FlattenLayer             , ctx_output1/relu_mbox_loc_perm            1,   1 ,  1 ,  21 ,  x ,  x ,  x ,
 x ,  x ,  x ,  x , 22 ,       1 ,      16 ,      20 ,      48 ,       1 ,       1 ,       1 ,   15360 ,         1
 ,
 23, TIDL_ConvolutionLayer         , ctx_output1/relu_mbox_conf                1,   1 ,  1 ,  16 ,  x ,  x ,  x ,
 x ,  x ,  x ,  x , 23 ,       1 ,     256 ,      20 ,      48 ,       1 ,      84 ,      20 ,      48 ,  20643840
 ,
 24, TIDL_FlattenLayer             , ctx_output1/relu_mbox_conf_perm           1,   1 ,  1 ,  23 ,  x ,  x ,  x ,
 x ,  x ,  x ,  x , 24 ,       1 ,      84 ,      20 ,      48 ,       1 ,       1 ,       1 ,   80640 ,         1
 ,
 26, TIDL_ConvolutionLayer         , ctx_output2/relu_mbox_loc                 1,   1 ,  1 ,  17 ,  x ,  x ,  x ,
 x ,  x ,  x ,  x , 26 ,       1 ,     256 ,      10 ,      24 ,       1 ,      24 ,      10 ,      24 ,   1474560
 ,
 27, TIDL_FlattenLayer             , ctx_output2/relu_mbox_loc_perm            1,   1 ,  1 ,  26 ,  x ,  x ,  x ,
 x ,  x ,  x ,  x , 27 ,       1 ,      24 ,      10 ,      24 ,       1 ,       1 ,       1 ,    5760 ,         1
 ,
 28, TIDL_ConvolutionLayer         , ctx_output2/relu_mbox_conf                1,   1 ,  1 ,  17 ,  x ,  x ,  x ,
 x ,  x ,  x ,  x , 28 ,       1 ,     256 ,      10 ,      24 ,       1 ,     126 ,      10 ,      24 ,   7741440
 ,
 29, TIDL_FlattenLayer             , ctx_output2/relu_mbox_conf_perm           1,   1 ,  1 ,  28 ,  x ,  x ,  x ,
 x ,  x ,  x ,  x , 29 ,       1 ,     126 ,      10 ,      24 ,       1 ,       1 ,       1 ,   30240 ,         1
 ,
 31, TIDL_ConvolutionLayer         , ctx_output3/relu_mbox_loc                 1,   1 ,  1 ,  18 ,  x ,  x ,  x ,
 x ,  x ,  x ,  x , 31 ,       1 ,     256 ,       5 ,      12 ,       1 ,      24 ,       5 ,      12 ,    368640
 ,
 32, TIDL_FlattenLayer             , ctx_output3/relu_mbox_loc_perm            1,   1 ,  1 ,  31 ,  x ,  x ,  x ,
 x ,  x ,  x ,  x , 32 ,       1 ,      24 ,       5 ,      12 ,       1 ,       1 ,       1 ,    1440 ,         1
 ,
 33, TIDL_ConvolutionLayer         , ctx_output3/relu_mbox_conf                1,   1 ,  1 ,  18 ,  x ,  x ,  x ,
 x ,  x ,  x ,  x , 33 ,       1 ,     256 ,       5 ,      12 ,       1 ,     126 ,       5 ,      12 ,   1935360
 ,
 34, TIDL_FlattenLayer             , ctx_output3/relu_mbox_conf_perm           1,   1 ,  1 ,  33 ,  x ,  x ,  x ,
 x ,  x ,  x ,  x , 34 ,       1 ,     126 ,       5 ,      12 ,       1 ,       1 ,       1 ,    7560 ,         1
 ,
 36, TIDL_ConvolutionLayer         , ctx_output4/relu_mbox_loc                 1,   1 ,  1 ,  19 ,  x ,  x ,  x ,
 x ,  x ,  x ,  x , 36 ,       1 ,     256 ,       3 ,       6 ,       1 ,      24 ,       3 ,       6 ,    110592
 ,
 37, TIDL_FlattenLayer             , ctx_output4/relu_mbox_loc_perm            1,   1 ,  1 ,  36 ,  x ,  x ,  x ,
 x ,  x ,  x ,  x , 37 ,       1 ,      24 ,       3 ,       6 ,       1 ,       1 ,       1 ,     432 ,         1
 ,
 38, TIDL_ConvolutionLayer         , ctx_output4/relu_mbox_conf                1,   1 ,  1 ,  19 ,  x ,  x ,  x ,
 x ,  x ,  x ,  x , 38 ,       1 ,     256 ,       3 ,       6 ,       1 ,     126 ,       3 ,       6 ,    580608
 ,
 39, TIDL_FlattenLayer             , ctx_output4/relu_mbox_conf_perm           1,   1 ,  1 ,  38 ,  x ,  x ,  x ,
 x ,  x ,  x ,  x , 39 ,       1 ,     126 ,       3 ,       6 ,       1 ,       1 ,       1 ,    2268 ,         1
 ,
 41, TIDL_ConvolutionLayer         , ctx_output5/relu_mbox_loc                 1,   1 ,  1 ,  20 ,  x ,  x ,  x ,
 x ,  x ,  x ,  x , 41 ,       1 ,     256 ,       2 ,       3 ,       1 ,      16 ,       2 ,       3 ,     24576
 ,
 42, TIDL_FlattenLayer             , ctx_output5/relu_mbox_loc_perm            1,   1 ,  1 ,  41 ,  x ,  x ,  x ,
 x ,  x ,  x ,  x , 42 ,       1 ,      16 ,       2 ,       3 ,       1 ,       1 ,       1 ,      96 ,         1
 ,
 43, TIDL_ConvolutionLayer         , ctx_output5/relu_mbox_conf                1,   1 ,  1 ,  20 ,  x ,  x ,  x ,
 x ,  x ,  x ,  x , 43 ,       1 ,     256 ,       2 ,       3 ,       1 ,      84 ,       2 ,       3 ,    129024
 ,
 44, TIDL_FlattenLayer             , ctx_output5/relu_mbox_conf_perm           1,   1 ,  1 ,  43 ,  x ,  x ,  x ,
 x ,  x ,  x ,  x , 44 ,       1 ,      84 ,       2 ,       3 ,       1 ,       1 ,       1 ,     504 ,         1
 ,
 46, TIDL_ConcatLayer              , mbox_loc                                  1,   5 ,  1 ,  22 , 27 , 32 , 37 ,
42 ,  x ,  x ,  x , 46 ,       1 ,       1 ,       1 ,   15360 ,       1 ,       1 ,       1 ,   23088 ,         1
 ,
 47, TIDL_ConcatLayer              , mbox_conf                                 1,   5 ,  1 ,  24 , 29 , 34 , 39 ,
44 ,  x ,  x ,  x , 47 ,       1 ,       1 ,       1 ,   80640 ,       1 ,       1 ,       1 ,  121212 ,         1
 ,
 49, TIDL_DetectionOutputLayer     , detection_out                             2,   2 ,  1 ,  46 , 47 ,  x ,  x ,
 x ,  x ,  x ,  x , 49 ,       1 ,       1 ,       1 ,   23088 ,       1 ,       1 ,       1 ,     560 ,         1
 ,
Total Giga Macs : 2.1312
        1개 파일이 복사되었습니다.

Processing config file .\tempDir\qunat_stats_config.txt !
  0, TIDL_DataLayer                ,  0,  -1 ,  1 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  0 ,    0 ,    0 ,
0 ,    0 ,    1 ,    3 ,  320 ,  768 ,
  1, TIDL_BatchNormLayer           ,  1,   1 ,  1 ,  0 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  1 ,    1 ,    3 ,  32
0 ,  768 ,    1 ,    3 ,  320 ,  768 ,
  2, TIDL_ConvolutionLayer         ,  1,   1 ,  1 ,  1 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  2 ,    1 ,    3 ,  32
0 ,  768 ,    1 ,   32 ,  160 ,  384 ,
  3, TIDL_ConvolutionLayer         ,  1,   1 ,  1 ,  2 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  3 ,    1 ,   32 ,  16
0 ,  384 ,    1 ,   32 ,   80 ,  192 ,
  4, TIDL_ConvolutionLayer         ,  1,   1 ,  1 ,  3 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  4 ,    1 ,   32 ,   8
0 ,  192 ,    1 ,   64 ,   80 ,  192 ,
  5, TIDL_ConvolutionLayer         ,  1,   1 ,  1 ,  4 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  5 ,    1 ,   64 ,   8
0 ,  192 ,    1 ,   64 ,   40 ,   96 ,
  6, TIDL_ConvolutionLayer         ,  1,   1 ,  1 ,  5 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  6 ,    1 ,   64 ,   4
0 ,   96 ,    1 ,  128 ,   40 ,   96 ,
  7, TIDL_ConvolutionLayer         ,  1,   1 ,  1 ,  6 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  7 ,    1 ,  128 ,   4
0 ,   96 ,    1 ,  128 ,   20 ,   48 ,
  8, TIDL_ConvolutionLayer         ,  1,   1 ,  1 ,  7 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  8 ,    1 ,  128 ,   2
0 ,   48 ,    1 ,  256 ,   20 ,   48 ,
  9, TIDL_ConvolutionLayer         ,  1,   1 ,  1 ,  8 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  9 ,    1 ,  256 ,   2
0 ,   48 ,    1 ,  256 ,   20 ,   48 ,
 10, TIDL_PoolingLayer             ,  1,   1 ,  1 ,  9 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 10 ,    1 ,  256 ,   2
0 ,   48 ,    1 ,  256 ,   10 ,   24 ,
 11, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 10 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 11 ,    1 ,  256 ,   1
0 ,   24 ,    1 ,  512 ,   10 ,   24 ,
 12, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 11 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 12 ,    1 ,  512 ,   1
0 ,   24 ,    1 ,  512 ,   10 ,   24 ,
 13, TIDL_PoolingLayer             ,  1,   1 ,  1 , 12 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 13 ,    1 ,  512 ,   1
0 ,   24 ,    1 ,  512 ,    5 ,   12 ,
 14, TIDL_PoolingLayer             ,  1,   1 ,  1 , 13 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 14 ,    1 ,  512 ,
5 ,   12 ,    1 ,  512 ,    3 ,    6 ,
 15, TIDL_PoolingLayer             ,  1,   1 ,  1 , 14 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 15 ,    1 ,  512 ,
3 ,    6 ,    1 ,  512 ,    2 ,    3 ,
 16, TIDL_ConvolutionLayer         ,  1,   1 ,  1 ,  9 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 16 ,    1 ,  256 ,   2
0 ,   48 ,    1 ,  256 ,   20 ,   48 ,
 17, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 12 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 17 ,    1 ,  512 ,   1
0 ,   24 ,    1 ,  256 ,   10 ,   24 ,
 18, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 13 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 18 ,    1 ,  512 ,
5 ,   12 ,    1 ,  256 ,    5 ,   12 ,
 19, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 14 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 19 ,    1 ,  512 ,
3 ,    6 ,    1 ,  256 ,    3 ,    6 ,
 20, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 15 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 20 ,    1 ,  512 ,
2 ,    3 ,    1 ,  256 ,    2 ,    3 ,
 21, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 16 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 21 ,    1 ,  256 ,   2
0 ,   48 ,    1 ,   16 ,   20 ,   48 ,
 22, TIDL_FlattenLayer             ,  1,   1 ,  1 , 21 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 22 ,    1 ,   16 ,   2
0 ,   48 ,    1 ,    1 ,    1 ,15360 ,
 23, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 16 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 23 ,    1 ,  256 ,   2
0 ,   48 ,    1 ,   84 ,   20 ,   48 ,
 24, TIDL_FlattenLayer             ,  1,   1 ,  1 , 23 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 24 ,    1 ,   84 ,   2
0 ,   48 ,    1 ,    1 ,    1 ,80640 ,
 25, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 17 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 26 ,    1 ,  256 ,   1
0 ,   24 ,    1 ,   24 ,   10 ,   24 ,
 26, TIDL_FlattenLayer             ,  1,   1 ,  1 , 26 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 27 ,    1 ,   24 ,   1
0 ,   24 ,    1 ,    1 ,    1 , 5760 ,
 27, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 17 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 28 ,    1 ,  256 ,   1
0 ,   24 ,    1 ,  126 ,   10 ,   24 ,
 28, TIDL_FlattenLayer             ,  1,   1 ,  1 , 28 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 29 ,    1 ,  126 ,   1
0 ,   24 ,    1 ,    1 ,    1 ,30240 ,
 29, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 18 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 31 ,    1 ,  256 ,
5 ,   12 ,    1 ,   24 ,    5 ,   12 ,
 30, TIDL_FlattenLayer             ,  1,   1 ,  1 , 31 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 32 ,    1 ,   24 ,
5 ,   12 ,    1 ,    1 ,    1 , 1440 ,
 31, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 18 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 33 ,    1 ,  256 ,
5 ,   12 ,    1 ,  126 ,    5 ,   12 ,
 32, TIDL_FlattenLayer             ,  1,   1 ,  1 , 33 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 34 ,    1 ,  126 ,
5 ,   12 ,    1 ,    1 ,    1 , 7560 ,
 33, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 19 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 36 ,    1 ,  256 ,
3 ,    6 ,    1 ,   24 ,    3 ,    6 ,
 34, TIDL_FlattenLayer             ,  1,   1 ,  1 , 36 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 37 ,    1 ,   24 ,
3 ,    6 ,    1 ,    1 ,    1 ,  432 ,
 35, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 19 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 38 ,    1 ,  256 ,
3 ,    6 ,    1 ,  126 ,    3 ,    6 ,
 36, TIDL_FlattenLayer             ,  1,   1 ,  1 , 38 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 39 ,    1 ,  126 ,
3 ,    6 ,    1 ,    1 ,    1 , 2268 ,
 37, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 20 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 41 ,    1 ,  256 ,
2 ,    3 ,    1 ,   16 ,    2 ,    3 ,
 38, TIDL_FlattenLayer             ,  1,   1 ,  1 , 41 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 42 ,    1 ,   16 ,
2 ,    3 ,    1 ,    1 ,    1 ,   96 ,
 39, TIDL_ConvolutionLayer         ,  1,   1 ,  1 , 20 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 43 ,    1 ,  256 ,
2 ,    3 ,    1 ,   84 ,    2 ,    3 ,
 40, TIDL_FlattenLayer             ,  1,   1 ,  1 , 43 ,  x ,  x ,  x ,  x ,  x ,  x ,  x , 44 ,    1 ,   84 ,
2 ,    3 ,    1 ,    1 ,    1 ,  504 ,
 41, TIDL_ConcatLayer              ,  1,   5 ,  1 , 22 , 27 , 32 , 37 , 42 ,  x ,  x ,  x , 46 ,    1 ,    1 ,
1 ,15360 ,    1 ,    1 ,    1 ,23088 ,
 42, TIDL_ConcatLayer              ,  1,   5 ,  1 , 24 , 29 , 34 , 39 , 44 ,  x ,  x ,  x , 47 ,    1 ,    1 ,
1 ,80640 ,    1 ,    1 ,    1 ,121212 ,
 43, TIDL_DetectionOutputLayer     ,  1,   2 ,  1 , 46 , 47 ,  x ,  x ,  x ,  x ,  x ,  x , 49 ,    1 ,    1 ,
1 ,23088 ,    1 ,    1 ,    1 ,  560 ,
 44, TIDL_DataLayer                ,  0,   1 , -1 , 49 ,  x ,  x ,  x ,  x ,  x ,  x ,  x ,  0 ,    1 ,    1 ,
1 ,  560 ,    0 ,    0 ,    0 ,    0 ,
Layer ID    ,inBlkWidth  ,inBlkHeight ,inBlkPitch  ,outBlkWidth ,outBlkHeight,outBlkPitch ,numInChs    ,numOutChs
  ,numProcInChs,numLclInChs ,numLclOutChs,numProcItrs ,numAccItrs  ,numHorBlock ,numVerBlock ,inBlkChPitch,outBlkC
hPitc,alignOrNot
      2           72           72           72           32           32           32            3           32
         3            1            8            1            3           12            5         5184         1024
            1
      3           40           34           40           32           32           32            8            8
         8            4            8            1            2           12            5         1360         1024
            1
      4           40           22           40           32           20           32           32           64
        32            8            8            1            4            6            4          880          640
            1
      5           40           22           40           32           20           32           16           16
        16            8            8            1            2            6            4          880          640
            1
      6           40           22           40           32           20           32           64          128
        64            8            8            1            8            3            2          880          640
            1
      7           40           22           40           32           20           32           32           32
        32            8            8            1            4            3            2          880          640
            1
      8           56           22           56           48           20           48          128          256
       128            7            8            1           19            1            1         1232          960
            1
      9           56           22           56           48           20           48           64           64
        64            7            8            1           10            1            1         1232          960
            1
     11           40           12           40           32           10           32          256          512
       256            8            8            1           32            1            1          480          320
            1
     12           40           12           40           32           10           32          128          128
       128            8            8            1           16            1            1          480          320
            1
     16           48            4           48           48            4           48          256          256
       256           32            8            1            8            1            5          192          192
            1
     17           24           10           24           24           10           24          512          256
       512           32           32            1           16            1            1          240          240
            1
     18           12            5           12           12            5           12          512          256
       512           32           32            1           16            1            1           60           60
            1
     19            6            3            6            6            3            6          512          256
       512           32           32            1           16            1            1           18           18
            1
     20            3            2            3            3            2            3          512          256
       512           32           32            1           16            1            1            6            6
            1
     21           48            4           48           48            4           48          256           16
       256           32            8            1            8            1            5          192          192
            1
     23           48            4           48           48            4           48          256           88
       256           32            8            1            8            1            5          192          192
            1
     25           24           10           24           24           10           24          256           24
       256           32           24            1            8            1            1          240          240
            1
     27           24           10           24           24           10           24          256          128
       256           32           32            1            8            1            1          240          240
            1
     29           12            5           12           12            5           12          256           24
       256           32           24            1            8            1            1           60           60
            1
     31           12            5           12           12            5           12          256          128
       256           32           32            1            8            1            1           60           60
            1
     33            6            3            6            6            3            6          256           24
       256           32           24            1            8            1            1           18           18
            1
     35            6            3            6            6            3            6          256          128
       256           32           32            1            8            1            1           18           18
            1
     37            3            2            3            3            2            3          256           16
       256           32           16            1            8            1            1            6            6
            1
     39            3            2            3            3            2            3          256           96
       256           32           32            1            8            1            1            6            6
            1

Processing Frame Number : 0

 Layer    1 : Out Q :      254 , TIDL_BatchNormLayer  , PASSED  #MMACs =     0.74,     0.74, Sparsity :   0.00
 Layer    2 : Out Q :     4787 , TIDL_ConvolutionLayer, PASSED  #MMACs =   147.46,    92.65, Sparsity :  37.17
 Layer    3 : Out Q :     4230 , TIDL_ConvolutionLayer, PASSED  #MMACs =   141.56,    53.33, Sparsity :  62.33
 Layer    4 : Out Q :     7280 , TIDL_ConvolutionLayer, PASSED  #MMACs =   283.12,    83.44, Sparsity :  70.53
 Layer    5 : Out Q :    10223 , TIDL_ConvolutionLayer, PASSED  #MMACs =   141.56,    66.11, Sparsity :  53.30
 Layer    6 : Out Q :     8988 , TIDL_ConvolutionLayer, PASSED  #MMACs =   283.12,    91.59, Sparsity :  67.65
 Layer    7 : Out Q :    10923 , TIDL_ConvolutionLayer, PASSED  #MMACs =   141.56,    57.32, Sparsity :  59.51
 Layer    8 : Out Q :    20852 , TIDL_ConvolutionLayer, PASSED  #MMACs =   283.12,    96.27, Sparsity :  66.00
 Layer    9 : Out Q :    18101 , TIDL_ConvolutionLayer, PASSED  #MMACs =   141.56,    52.28, Sparsity :  63.07
 Layer   10 :TIDL_PoolingLayer,     PASSED  #MMACs =     0.06,     0.06, Sparsity :   0.00
 Layer   11 : Out Q :    27171 , TIDL_ConvolutionLayer, PASSED  #MMACs =   283.12,    76.31, Sparsity :  73.04
 Layer   12 : Out Q :     5405 , TIDL_ConvolutionLayer, PASSED  #MMACs =   141.56,    31.40, Sparsity :  77.82
 Layer   13 :TIDL_PoolingLayer,     PASSED  #MMACs =     0.03,     0.03, Sparsity :   0.00
 Layer   14 :TIDL_PoolingLayer,     PASSED  #MMACs =     0.01,     0.01, Sparsity :   0.00
 Layer   15 :TIDL_PoolingLayer,     PASSED  #MMACs =     0.00,     0.00, Sparsity :   0.00
 Layer   16 : Out Q :    15924 , TIDL_ConvolutionLayer, PASSED  #MMACs =    62.91,    62.91, Sparsity :   0.00
 Layer   17 : Out Q :    10177 , TIDL_ConvolutionLayer, PASSED  #MMACs =    31.46,    31.46, Sparsity :   0.00
 Layer   18 : Out Q :    14028 , TIDL_ConvolutionLayer, PASSED  #MMACs =     7.86,     7.86, Sparsity :   0.00
 Layer   19 : Out Q :    17569 , TIDL_ConvolutionLayer, PASSED  #MMACs =     2.36,     2.36, Sparsity :   0.00
 Layer   20 : Out Q :    26121 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.79,     0.79, Sparsity :   0.00
 Layer   21 : Out Q :     4366 , TIDL_ConvolutionLayer, PASSED  #MMACs =     3.93,     3.93, Sparsity :   0.00
 Layer   22 :TIDL_FlattenLayer, PASSED  #MMACs =     0.02,     0.02, Sparsity :   0.00
 Layer   23 : Out Q :     3862 , TIDL_ConvolutionLayer, PASSED  #MMACs =    21.63,    21.63, Sparsity :   0.00
 Layer   24 :TIDL_FlattenLayer, PASSED  #MMACs =     0.08,     0.08, Sparsity :   0.00
 Layer   25 : Out Q :     5460 , TIDL_ConvolutionLayer, PASSED  #MMACs =     1.47,     1.47, Sparsity :   0.00
 Layer   26 :TIDL_FlattenLayer, PASSED  #MMACs =     0.01,     0.01, Sparsity :   0.00
 Layer   27 : Out Q :     2597 , TIDL_ConvolutionLayer, PASSED  #MMACs =     7.86,     7.86, Sparsity :   0.00
 Layer   28 :TIDL_FlattenLayer, PASSED  #MMACs =     0.03,     0.03, Sparsity :   0.00
 Layer   29 : Out Q :     6983 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.37,     0.37, Sparsity :   0.00
 Layer   30 :TIDL_FlattenLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity :   0.00
 Layer   31 : Out Q :     2508 , TIDL_ConvolutionLayer, PASSED  #MMACs =     1.97,     1.97, Sparsity :   0.00
 Layer   32 :TIDL_FlattenLayer, PASSED  #MMACs =     0.01,     0.01, Sparsity :   0.00
 Layer   33 : Out Q :     9470 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.11,     0.11, Sparsity :   0.00
 Layer   34 :TIDL_FlattenLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity :   0.00
 Layer   35 : Out Q :     3264 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.59,     0.59, Sparsity :   0.00
 Layer   36 :TIDL_FlattenLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity :   0.00
 Layer   37 : Out Q :     8417 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.02,     0.02, Sparsity :   0.00
 Layer   38 :TIDL_FlattenLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity :   0.00
 Layer   39 : Out Q :     3940 , TIDL_ConvolutionLayer, PASSED  #MMACs =     0.15,     0.15, Sparsity :   0.00
 Layer   40 :TIDL_FlattenLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity :   0.00
 Layer   41 : Out Q :     4383 , TIDL_ConcatLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity :  -1.#J
 Layer   42 : Out Q :     2518 , TIDL_ConcatLayer, PASSED  #MMACs =     0.00,     0.00, Sparsity :  -1.#J
 Layer   43 : #MMACs =     0.00,     0.00, Sparsity :   0.00
End of config list found !

c:\PROCESSOR_SDK_VISION_03_03_00_00\ti_components\algorithms\REL.TIDLSRC.01.01.02.00\modules\ti_dl\utils\tidlModel
Import> What else should I check? Thank you for your help. BR, Khethan

Hi Khethan, Can you share your output ? Thanks, Praveen

Hi Praveen, Here I attach the output for the input. tempDir.zip BR, Khethan

Hi Praveen, I have tested on TDA2P EVM, but the output data is initialized as below attachment files. evm_output.zip This phenomenon seems to be the same in PC simulation mode. As mentioned earlier, if I use eve_test_dl_algo.out.exe, which is included in the package by default, the output is very good. The TIDL build was referenced in the TIDeepLearningLibrary_UserGuide.pdf document. BR, Khethan

Hi Praveen, I tried to compile eve and dsp again with TIDL_SRC(1.1.2), and confirmed that the generated file (dsp_test_dl_algo.out, eve_test_dl_algo.out) works fine on EVM through CCS as output file(stats_tool_out.bin). However, when I execute the same model file with "tidl od usecase" in EVM(sd_boot), the video is played but the bbox is not displayed. please refer my data. eve_data_log.zip I would appreciate your advice on what went wrong. BR, Khethan

Hi Khethan, Were you able get TIDL Usecase working as is from release package? Thanks, Praveen

Hi Praveen, The package(3.3.0.0) which i use current was not supported TIDL usecase for TDA2P, but I confirmed that it works well after modifying the chain etc with reference to TDA2X. Regarding above issue, It was related to layersGroupId valule in tidl_import_JDetNex.txt. When I values just change as below regardless of version, the problem was solved. before: layersGroupId = 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 0 conv2dKernelType = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 after: layersGroupId = 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 2 0 conv2dKernelType = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 But there was another problem. 1. When tidl usecase is executed, bbox is not displayed from the beginning and box is displayed from about 20sec of video. 2. When video(inData and inHeader) are replaced with mine, frame is played at 1 ~ 2fps slowly, resulting in frame reversal. the Problem is not reproduced when using ti demo clip. I made this clip using the program(ffmpeg&ffprobe&sizeBin) and It seem like to have no problem. BR, Khethan

Hi Praveen #1 I have reduced the time to 6sec by adjusting parameters( quantHistoryParam1 / 2 and quantMargin) as below. 20, 5, 0 -> 40, 40, 40 Is there any problem using this value? How can we reduce the lead time further? I have read for the doc(tidl user guide) for parameter but I do not understand it enough. could you please explain about the parameter in detail(unit.etc) #2 The attached log file does not seem to be a problem. revers_sym_log.txt Referencing TIDeepLearningLibrary_UserGuide.pdf 3.7 (Input and Output Data Formats), clip format is below. right? width: 760(video)+4(MAX_PAD), height; 312(video)+4(MAX_PAD) If it is not related to it, What should I do ? BR, Khethan

I am sorry, The clip size should be modified as follows due to my mistake width: 760(video)+2*4(MAX_PAD), height; 312(video)+2*4(MAX_PAD) BR, Khethan

Hi Khethan, #1 The lead time can not be reduced by changing these quant parameters, these parameters are used to improve the accuracy, I explained these parameters in detail below, In TIDL, we use the current computation of min and max to update the quantization parameters for next frame. We don’t directly use it in the next frame, we gradually update. This quantHistoryParam1 / 2 and quantMargin values are used to control, how fast we need update the quantization parameter. If quantHistoryParam1 / 2 are higher than the update will happen faster. QuantMargin controls the margin that would want for max to grow. #2 Yes, this padding is correct Thanks, Praveen

Hi Praveen, My issue was solved Thank you for your support. BR, Khethan