File size: 15,574 Bytes
c65ba42
c119679
 
 
 
 
 
 
c65ba42
c119679
d4b9099
c119679
 
3c6573c
d4b9099
 
c119679
bd811e9
 
 
 
 
7eccbd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd811e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c119679
 
 
 
 
d4b9099
7eccbd5
bd811e9
 
 
 
7eccbd5
 
 
 
 
 
 
 
 
c119679
 
bd811e9
 
 
 
 
 
 
 
c119679
 
 
 
 
 
 
 
 
 
 
d4b9099
c119679
 
 
 
 
 
d4b9099
 
 
 
 
 
c119679
d4b9099
c119679
7eccbd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd811e9
 
7eccbd5
 
d4b9099
c119679
d4b9099
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7eccbd5
c119679
d4b9099
c119679
d4b9099
 
c119679
d4b9099
 
 
 
 
 
c119679
 
 
d4b9099
 
c119679
 
 
d4b9099
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c65ba42
c119679
d4b9099
c119679
3c6573c
c119679
 
d4b9099
 
 
 
 
 
 
 
 
3c6573c
c119679
 
 
7eccbd5
 
3c6573c
c65ba42
c119679
 
 
 
 
 
 
 
 
 
 
 
d4b9099
c119679
 
 
 
d4b9099
 
c119679
 
 
 
 
 
 
d4b9099
 
c119679
 
 
 
 
d4b9099
 
 
c119679
 
d4b9099
c119679
d4b9099
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import os
import multiprocessing
import concurrent.futures
from langchain.document_loaders import TextLoader, DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from sentence_transformers import SentenceTransformer
import faiss
import torch
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
from datetime import datetime
import json
import gradio as gr
import re
from threading import Thread

from llama_index.core import VectorStoreIndex, Document
from llama_index.core.tools import QueryEngineTool, ToolMetadata
from llama_index.agent.openai import OpenAIAgent


class Agent:
    def __init__(self, name, role, doc_retrieval_gen, tokenizer):
        self.name = name
        self.role = role
        self.doc_retrieval_gen = doc_retrieval_gen
        self.tokenizer = tokenizer

    def generate_response(self, query, context):
        if self.role == "Information Retrieval":
            return self.retriever_logic(query, context)
        elif self.role == "Content Analysis":
            return self.analyzer_logic(query, context)
        elif self.role == "Response Generation":
            return self.generator_logic(query, context)
        elif self.role == "Task Coordination":
            return self.coordinator_logic(query, context)

    def retriever_logic(self, query, all_splits):
        query_embedding = self.doc_retrieval_gen.embeddings.encode(query, convert_to_tensor=True).cpu().numpy()
        distances, indices = self.doc_retrieval_gen.gpu_index.search(np.array([query_embedding]), k=3)
        relevant_docs = [all_splits[i] for i in indices[0] if distances[0][i] <= 1]
        return relevant_docs

    def analyzer_logic(self, query, relevant_docs):
        analysis_prompt = f"Analyze the following documents in relation to the query: '{query}'\n\nDocuments:\n"
        for doc in relevant_docs:
            analysis_prompt += f"- {doc.page_content}\n"
        analysis_prompt += "\nProvide a concise analysis of the key points relevant to the query."
        
        input_ids = self.tokenizer.encode(analysis_prompt, return_tensors="pt").to(self.doc_retrieval_gen.model.device)
        analysis = self.doc_retrieval_gen.model.generate(input_ids, max_length=200, num_return_sequences=1)
        return self.tokenizer.decode(analysis[0], skip_special_tokens=True)

    def generator_logic(self, query, analyzed_content):
        generation_prompt = f"Based on the following analysis, generate a comprehensive answer to the query: '{query}'\n\nAnalysis:\n{analyzed_content}\n\nGenerate a detailed response:"
        
        input_ids = self.tokenizer.encode(generation_prompt, return_tensors="pt").to(self.doc_retrieval_gen.model.device)
        response = self.doc_retrieval_gen.model.generate(input_ids, max_length=300, num_return_sequences=1)
        return self.tokenizer.decode(response[0], skip_special_tokens=True)

    def coordinator_logic(self, query, final_response):
        coordination_prompt = f"As a coordinator, review and refine the following response to the query: '{query}'\n\nResponse:\n{final_response}\n\nProvide a final, polished answer:"
        
        input_ids = self.tokenizer.encode(coordination_prompt, return_tensors="pt").to(self.doc_retrieval_gen.model.device)
        coordinated_response = self.doc_retrieval_gen.model.generate(input_ids, max_length=350, num_return_sequences=1)
        return self.tokenizer.decode(coordinated_response[0], skip_special_tokens=True)

class MultiDocumentAgentSystem:
    def __init__(self, documents_dict, llm, embed_model):
        self.llm = llm
        self.embed_model = embed_model
        self.document_agents = {}
        self.create_document_agents(documents_dict)
        self.top_agent = self.create_top_agent()

    def create_document_agents(self, documents_dict):
        for doc_name, doc_content in documents_dict.items():
            vector_index = VectorStoreIndex.from_documents([Document(doc_content)])
            summary_index = VectorStoreIndex.from_documents([Document(doc_content)])
            
            vector_query_engine = vector_index.as_query_engine(similarity_top_k=2)
            summary_query_engine = summary_index.as_query_engine()

            query_engine_tools = [
                QueryEngineTool(
                    query_engine=vector_query_engine,
                    metadata=ToolMetadata(
                        name=f"vector_tool_{doc_name}",
                        description=f"Useful for specific questions about {doc_name}",
                    ),
                ),
                QueryEngineTool(
                    query_engine=summary_query_engine,
                    metadata=ToolMetadata(
                        name=f"summary_tool_{doc_name}",
                        description=f"Useful for summarizing content about {doc_name}",
                    ),
                ),
            ]

            self.document_agents[doc_name] = OpenAIAgent.from_tools(
                query_engine_tools,
                llm=self.llm,
                verbose=True,
                system_prompt=f"You are an agent designed to answer queries about {doc_name}.",
            )

    def create_top_agent(self):
        all_tools = []
        for doc_name, agent in self.document_agents.items():
            doc_tool = QueryEngineTool(
                query_engine=agent,
                metadata=ToolMetadata(
                    name=f"tool_{doc_name}",
                    description=f"Use this tool for questions about {doc_name}",
                ),
            )
            all_tools.append(doc_tool)

        obj_index = VectorStoreIndex.from_objects(all_tools, embed_model=self.embed_model)

        return OpenAIAgent.from_tools(
            all_tools,
            llm=self.llm,
            verbose=True,
            system_prompt="You are an agent designed to answer queries about multiple documents.",
            tool_retriever=obj_index.as_retriever(similarity_top_k=3),
        )

    def query(self, user_input):
        return self.top_agent.chat(user_input)
        
class DocumentRetrievalAndGeneration:
    def __init__(self, embedding_model_name, lm_model_id, data_folder):
        self.all_splits = self.load_documents(data_folder)
        self.embeddings = SentenceTransformer(embedding_model_name)
        self.gpu_index = self.create_faiss_index()
        self.tokenizer, self.model = self.initialize_llm(lm_model_id)
        self.agents = self.initialize_agents()
        documents_dict = self.load_documents(data_folder)
        self.multi_doc_system = MultiDocumentAgentSystem(documents_dict, self.model, self.embeddings)



    def initialize_agents(self):
        agents = [
            Agent("Retriever", "Information Retrieval", self, self.tokenizer),
            Agent("Analyzer", "Content Analysis", self, self.tokenizer),
            Agent("Generator", "Response Generation", self, self.tokenizer),
            Agent("Coordinator", "Task Coordination", self, self.tokenizer)
        ]
        return agents

    def load_documents(self, folder_path):
        documents_dict = {}
        for file_name in os.listdir(folder_path):
            if file_name.endswith('.txt'):
                file_path = os.path.join(folder_path, file_name)
                with open(file_path, 'r', encoding='utf-8') as file:
                    content = file.read()
                    documents_dict[file_name[:-4]] = content  # Use filename without .txt as key
        return documents_dict

    def create_faiss_index(self):
        all_texts = [split.page_content for split in self.all_splits]
        embeddings = self.embeddings.encode(all_texts, convert_to_tensor=True).cpu().numpy()
        index = faiss.IndexFlatL2(embeddings.shape[1])
        index.add(embeddings)
        gpu_resource = faiss.StandardGpuResources()
        gpu_index = faiss.index_cpu_to_gpu(gpu_resource, 0, index)
        return gpu_index

    def initialize_llm(self, model_id):
        quantization_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.bfloat16
        )
        tokenizer = AutoTokenizer.from_pretrained(model_id)
        model = AutoModelForCausalLM.from_pretrained(
            model_id,
            torch_dtype=torch.bfloat16,
            device_map="auto",
           
            quantization_config=quantization_config
        )
        return tokenizer, model

    def coordinate_agents(self, query):
        coordinator = next(agent for agent in self.agents if agent.name == "Coordinator")
        
        # Step 1: Information Retrieval
        retriever = next(agent for agent in self.agents if agent.name == "Retriever")
        relevant_docs = retriever.generate_response(query, self.all_splits)
        
        # Step 2: Content Analysis
        analyzer = next(agent for agent in self.agents if agent.name == "Analyzer")
        analyzed_content = analyzer.generate_response(query, relevant_docs)
        
        # Step 3: Response Generation
        generator = next(agent for agent in self.agents if agent.name == "Generator")
        final_response = generator.generate_response(query, analyzed_content)
        
        # Step 4: Coordination and Refinement
        coordinated_response = coordinator.generate_response(query, final_response)
        
        return coordinated_response, "\n".join([doc.page_content for doc in relevant_docs])

    def query_and_generate_response(self, query):
        response = self.multi_doc_system.query(query)
        return str(response), ""

        
    def generate_response_with_timeout(self, input_ids, max_new_tokens=1000):
        try:
            streamer = TextIteratorStreamer(self.tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
            generate_kwargs = dict(
                input_ids=input_ids,
                max_new_tokens=max_new_tokens,
                do_sample=True,
                top_p=1.0,
                top_k=20,
                temperature=0.8,
                repetition_penalty=1.2,
                eos_token_id=[128001, 128008, 128009],
                streamer=streamer,
            )
            
            thread = Thread(target=self.model.generate, kwargs=generate_kwargs)
            thread.start()
            
            generated_text = ""
            for new_text in streamer:
                generated_text += new_text
            
            return generated_text
        except Exception as e:
            print(f"Error in generate_response_with_timeout: {str(e)}")
            return "Text generation process encountered an error"


    def query_and_generate_response(self, query):
        similarityThreshold = 1
        query_embedding = self.embeddings.encode(query, convert_to_tensor=True).cpu().numpy()
        distances, indices = self.gpu_index.search(np.array([query_embedding]), k=3)
        print("Distance", distances, "indices", indices)
        content = ""
        filtered_results = []
        for idx, distance in zip(indices[0], distances[0]):
            if distance <= similarityThreshold:
                filtered_results.append(idx)
            for i in filtered_results:
                print(self.all_splits[i].page_content)
            content += "-" * 50 + "\n"
            content += self.all_splits[idx].page_content + "\n"
            print("CHUNK", idx)
            print("Distance:", distance)
            print("indices:", indices)
            print(self.all_splits[idx].page_content)
            print("############################")

        conversation = [
            {"role": "system", "content": "You are a knowledgeable assistant with access to a comprehensive database."},
            {"role": "user", "content": f"""
            I need you to answer my question and provide related information in a specific format.
            I have provided five relatable json files {content}, choose the most suitable chunks for answering the query.
            RETURN ONLY SOLUTION without additional comments, sign-offs, retrived chunks, refrence to any Ticket or extra phrases. Be direct and to the point.
            IF THERE IS NO ANSWER RELATABLE IN RETRIEVED CHUNKS, RETURN "NO SOLUTION AVAILABLE".
            DO NOT GIVE REFRENCE TO ANY CHUNKS OR TICKETS,BE ON POINT.
            
            Here's my question:
            Query: {query}
            Solution==>
            """}
        ]
        #Include a final answer without additional comments, sign-offs, or extra phrases. Be direct and to the point.
        input_ids = self.tokenizer.apply_chat_template(conversation, return_tensors="pt").to(self.model.device)
        
        start_time = datetime.now()
        generated_response = self.generate_response_with_timeout(input_ids)
        elapsed_time = datetime.now() - start_time

        print("Generated response:", generated_response)
        print("Time elapsed:", elapsed_time)
        print("Device in use:", self.model.device)

        solution_text = generated_response.strip()
        if "Solution:" in solution_text:
            solution_text = solution_text.split("Solution:", 1)[1].strip()

        # Post-processing to remove "assistant" prefix
        solution_text = re.sub(r'^assistant\s*', '', solution_text, flags=re.IGNORECASE)
        solution_text = solution_text.strip()

        return solution_text, content

    def qa_infer_gradio(self, query):
        response, related_queries = self.query_and_generate_response(query)
        return response, related_queries

if __name__ == "__main__":
    embedding_model_name = 'flax-sentence-embeddings/all_datasets_v3_MiniLM-L12'
    lm_model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
    data_folder = 'sample_embedding_folder2'

    doc_retrieval_gen = DocumentRetrievalAndGeneration(embedding_model_name, lm_model_id, data_folder)

    def launch_interface():
        css_code = """
            .gradio-container {
                background-color: #daccdb;
            }
            button {
                background-color: #927fc7;
                color: black;
                border: 1px solid black;
                padding: 10px;
                margin-right: 10px;
                font-size: 16px;
                font-weight: bold;
            }
        """
        EXAMPLES = [
            "On which devices can the VIP and CSI2 modules operate simultaneously?", 
            "I'm using Code Composer Studio 5.4.0.00091 and enabled FPv4SPD16 floating point support for CortexM4 in TDA2. However, after building the project, the .asm file shows --float_support=vfplib instead of FPv4SPD16. Why is this happening?", 
            "Could you clarify the maximum number of cameras that can be connected simultaneously to the video input ports on the TDA2x SoC, considering it supports up to 10 multiplexed input ports and includes 3 dedicated video input modules?"
        ]

        interface = gr.Interface(
            fn=doc_retrieval_gen.qa_infer_gradio,
            inputs=[gr.Textbox(label="QUERY", placeholder="Enter your query here")],
            allow_flagging='never',
            examples=EXAMPLES,
            cache_examples=False,
            outputs=[gr.Textbox(label="RESPONSE"), gr.Textbox(label="RELATED QUERIES")],
            css=css_code,
            title="TI E2E FORUM"
        )

        interface.launch(debug=True)

    launch_interface()