Spaces:
Runtime error
Runtime error
File size: 15,574 Bytes
c65ba42 c119679 c65ba42 c119679 d4b9099 c119679 3c6573c d4b9099 c119679 bd811e9 7eccbd5 bd811e9 c119679 d4b9099 7eccbd5 bd811e9 7eccbd5 c119679 bd811e9 c119679 d4b9099 c119679 d4b9099 c119679 d4b9099 c119679 7eccbd5 bd811e9 7eccbd5 d4b9099 c119679 d4b9099 7eccbd5 c119679 d4b9099 c119679 d4b9099 c119679 d4b9099 c119679 d4b9099 c119679 d4b9099 c65ba42 c119679 d4b9099 c119679 3c6573c c119679 d4b9099 3c6573c c119679 7eccbd5 3c6573c c65ba42 c119679 d4b9099 c119679 d4b9099 c119679 d4b9099 c119679 d4b9099 c119679 d4b9099 c119679 d4b9099 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
import os
import multiprocessing
import concurrent.futures
from langchain.document_loaders import TextLoader, DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from sentence_transformers import SentenceTransformer
import faiss
import torch
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
from datetime import datetime
import json
import gradio as gr
import re
from threading import Thread
from llama_index.core import VectorStoreIndex, Document
from llama_index.core.tools import QueryEngineTool, ToolMetadata
from llama_index.agent.openai import OpenAIAgent
class Agent:
def __init__(self, name, role, doc_retrieval_gen, tokenizer):
self.name = name
self.role = role
self.doc_retrieval_gen = doc_retrieval_gen
self.tokenizer = tokenizer
def generate_response(self, query, context):
if self.role == "Information Retrieval":
return self.retriever_logic(query, context)
elif self.role == "Content Analysis":
return self.analyzer_logic(query, context)
elif self.role == "Response Generation":
return self.generator_logic(query, context)
elif self.role == "Task Coordination":
return self.coordinator_logic(query, context)
def retriever_logic(self, query, all_splits):
query_embedding = self.doc_retrieval_gen.embeddings.encode(query, convert_to_tensor=True).cpu().numpy()
distances, indices = self.doc_retrieval_gen.gpu_index.search(np.array([query_embedding]), k=3)
relevant_docs = [all_splits[i] for i in indices[0] if distances[0][i] <= 1]
return relevant_docs
def analyzer_logic(self, query, relevant_docs):
analysis_prompt = f"Analyze the following documents in relation to the query: '{query}'\n\nDocuments:\n"
for doc in relevant_docs:
analysis_prompt += f"- {doc.page_content}\n"
analysis_prompt += "\nProvide a concise analysis of the key points relevant to the query."
input_ids = self.tokenizer.encode(analysis_prompt, return_tensors="pt").to(self.doc_retrieval_gen.model.device)
analysis = self.doc_retrieval_gen.model.generate(input_ids, max_length=200, num_return_sequences=1)
return self.tokenizer.decode(analysis[0], skip_special_tokens=True)
def generator_logic(self, query, analyzed_content):
generation_prompt = f"Based on the following analysis, generate a comprehensive answer to the query: '{query}'\n\nAnalysis:\n{analyzed_content}\n\nGenerate a detailed response:"
input_ids = self.tokenizer.encode(generation_prompt, return_tensors="pt").to(self.doc_retrieval_gen.model.device)
response = self.doc_retrieval_gen.model.generate(input_ids, max_length=300, num_return_sequences=1)
return self.tokenizer.decode(response[0], skip_special_tokens=True)
def coordinator_logic(self, query, final_response):
coordination_prompt = f"As a coordinator, review and refine the following response to the query: '{query}'\n\nResponse:\n{final_response}\n\nProvide a final, polished answer:"
input_ids = self.tokenizer.encode(coordination_prompt, return_tensors="pt").to(self.doc_retrieval_gen.model.device)
coordinated_response = self.doc_retrieval_gen.model.generate(input_ids, max_length=350, num_return_sequences=1)
return self.tokenizer.decode(coordinated_response[0], skip_special_tokens=True)
class MultiDocumentAgentSystem:
def __init__(self, documents_dict, llm, embed_model):
self.llm = llm
self.embed_model = embed_model
self.document_agents = {}
self.create_document_agents(documents_dict)
self.top_agent = self.create_top_agent()
def create_document_agents(self, documents_dict):
for doc_name, doc_content in documents_dict.items():
vector_index = VectorStoreIndex.from_documents([Document(doc_content)])
summary_index = VectorStoreIndex.from_documents([Document(doc_content)])
vector_query_engine = vector_index.as_query_engine(similarity_top_k=2)
summary_query_engine = summary_index.as_query_engine()
query_engine_tools = [
QueryEngineTool(
query_engine=vector_query_engine,
metadata=ToolMetadata(
name=f"vector_tool_{doc_name}",
description=f"Useful for specific questions about {doc_name}",
),
),
QueryEngineTool(
query_engine=summary_query_engine,
metadata=ToolMetadata(
name=f"summary_tool_{doc_name}",
description=f"Useful for summarizing content about {doc_name}",
),
),
]
self.document_agents[doc_name] = OpenAIAgent.from_tools(
query_engine_tools,
llm=self.llm,
verbose=True,
system_prompt=f"You are an agent designed to answer queries about {doc_name}.",
)
def create_top_agent(self):
all_tools = []
for doc_name, agent in self.document_agents.items():
doc_tool = QueryEngineTool(
query_engine=agent,
metadata=ToolMetadata(
name=f"tool_{doc_name}",
description=f"Use this tool for questions about {doc_name}",
),
)
all_tools.append(doc_tool)
obj_index = VectorStoreIndex.from_objects(all_tools, embed_model=self.embed_model)
return OpenAIAgent.from_tools(
all_tools,
llm=self.llm,
verbose=True,
system_prompt="You are an agent designed to answer queries about multiple documents.",
tool_retriever=obj_index.as_retriever(similarity_top_k=3),
)
def query(self, user_input):
return self.top_agent.chat(user_input)
class DocumentRetrievalAndGeneration:
def __init__(self, embedding_model_name, lm_model_id, data_folder):
self.all_splits = self.load_documents(data_folder)
self.embeddings = SentenceTransformer(embedding_model_name)
self.gpu_index = self.create_faiss_index()
self.tokenizer, self.model = self.initialize_llm(lm_model_id)
self.agents = self.initialize_agents()
documents_dict = self.load_documents(data_folder)
self.multi_doc_system = MultiDocumentAgentSystem(documents_dict, self.model, self.embeddings)
def initialize_agents(self):
agents = [
Agent("Retriever", "Information Retrieval", self, self.tokenizer),
Agent("Analyzer", "Content Analysis", self, self.tokenizer),
Agent("Generator", "Response Generation", self, self.tokenizer),
Agent("Coordinator", "Task Coordination", self, self.tokenizer)
]
return agents
def load_documents(self, folder_path):
documents_dict = {}
for file_name in os.listdir(folder_path):
if file_name.endswith('.txt'):
file_path = os.path.join(folder_path, file_name)
with open(file_path, 'r', encoding='utf-8') as file:
content = file.read()
documents_dict[file_name[:-4]] = content # Use filename without .txt as key
return documents_dict
def create_faiss_index(self):
all_texts = [split.page_content for split in self.all_splits]
embeddings = self.embeddings.encode(all_texts, convert_to_tensor=True).cpu().numpy()
index = faiss.IndexFlatL2(embeddings.shape[1])
index.add(embeddings)
gpu_resource = faiss.StandardGpuResources()
gpu_index = faiss.index_cpu_to_gpu(gpu_resource, 0, index)
return gpu_index
def initialize_llm(self, model_id):
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config
)
return tokenizer, model
def coordinate_agents(self, query):
coordinator = next(agent for agent in self.agents if agent.name == "Coordinator")
# Step 1: Information Retrieval
retriever = next(agent for agent in self.agents if agent.name == "Retriever")
relevant_docs = retriever.generate_response(query, self.all_splits)
# Step 2: Content Analysis
analyzer = next(agent for agent in self.agents if agent.name == "Analyzer")
analyzed_content = analyzer.generate_response(query, relevant_docs)
# Step 3: Response Generation
generator = next(agent for agent in self.agents if agent.name == "Generator")
final_response = generator.generate_response(query, analyzed_content)
# Step 4: Coordination and Refinement
coordinated_response = coordinator.generate_response(query, final_response)
return coordinated_response, "\n".join([doc.page_content for doc in relevant_docs])
def query_and_generate_response(self, query):
response = self.multi_doc_system.query(query)
return str(response), ""
def generate_response_with_timeout(self, input_ids, max_new_tokens=1000):
try:
streamer = TextIteratorStreamer(self.tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=1.0,
top_k=20,
temperature=0.8,
repetition_penalty=1.2,
eos_token_id=[128001, 128008, 128009],
streamer=streamer,
)
thread = Thread(target=self.model.generate, kwargs=generate_kwargs)
thread.start()
generated_text = ""
for new_text in streamer:
generated_text += new_text
return generated_text
except Exception as e:
print(f"Error in generate_response_with_timeout: {str(e)}")
return "Text generation process encountered an error"
def query_and_generate_response(self, query):
similarityThreshold = 1
query_embedding = self.embeddings.encode(query, convert_to_tensor=True).cpu().numpy()
distances, indices = self.gpu_index.search(np.array([query_embedding]), k=3)
print("Distance", distances, "indices", indices)
content = ""
filtered_results = []
for idx, distance in zip(indices[0], distances[0]):
if distance <= similarityThreshold:
filtered_results.append(idx)
for i in filtered_results:
print(self.all_splits[i].page_content)
content += "-" * 50 + "\n"
content += self.all_splits[idx].page_content + "\n"
print("CHUNK", idx)
print("Distance:", distance)
print("indices:", indices)
print(self.all_splits[idx].page_content)
print("############################")
conversation = [
{"role": "system", "content": "You are a knowledgeable assistant with access to a comprehensive database."},
{"role": "user", "content": f"""
I need you to answer my question and provide related information in a specific format.
I have provided five relatable json files {content}, choose the most suitable chunks for answering the query.
RETURN ONLY SOLUTION without additional comments, sign-offs, retrived chunks, refrence to any Ticket or extra phrases. Be direct and to the point.
IF THERE IS NO ANSWER RELATABLE IN RETRIEVED CHUNKS, RETURN "NO SOLUTION AVAILABLE".
DO NOT GIVE REFRENCE TO ANY CHUNKS OR TICKETS,BE ON POINT.
Here's my question:
Query: {query}
Solution==>
"""}
]
#Include a final answer without additional comments, sign-offs, or extra phrases. Be direct and to the point.
input_ids = self.tokenizer.apply_chat_template(conversation, return_tensors="pt").to(self.model.device)
start_time = datetime.now()
generated_response = self.generate_response_with_timeout(input_ids)
elapsed_time = datetime.now() - start_time
print("Generated response:", generated_response)
print("Time elapsed:", elapsed_time)
print("Device in use:", self.model.device)
solution_text = generated_response.strip()
if "Solution:" in solution_text:
solution_text = solution_text.split("Solution:", 1)[1].strip()
# Post-processing to remove "assistant" prefix
solution_text = re.sub(r'^assistant\s*', '', solution_text, flags=re.IGNORECASE)
solution_text = solution_text.strip()
return solution_text, content
def qa_infer_gradio(self, query):
response, related_queries = self.query_and_generate_response(query)
return response, related_queries
if __name__ == "__main__":
embedding_model_name = 'flax-sentence-embeddings/all_datasets_v3_MiniLM-L12'
lm_model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
data_folder = 'sample_embedding_folder2'
doc_retrieval_gen = DocumentRetrievalAndGeneration(embedding_model_name, lm_model_id, data_folder)
def launch_interface():
css_code = """
.gradio-container {
background-color: #daccdb;
}
button {
background-color: #927fc7;
color: black;
border: 1px solid black;
padding: 10px;
margin-right: 10px;
font-size: 16px;
font-weight: bold;
}
"""
EXAMPLES = [
"On which devices can the VIP and CSI2 modules operate simultaneously?",
"I'm using Code Composer Studio 5.4.0.00091 and enabled FPv4SPD16 floating point support for CortexM4 in TDA2. However, after building the project, the .asm file shows --float_support=vfplib instead of FPv4SPD16. Why is this happening?",
"Could you clarify the maximum number of cameras that can be connected simultaneously to the video input ports on the TDA2x SoC, considering it supports up to 10 multiplexed input ports and includes 3 dedicated video input modules?"
]
interface = gr.Interface(
fn=doc_retrieval_gen.qa_infer_gradio,
inputs=[gr.Textbox(label="QUERY", placeholder="Enter your query here")],
allow_flagging='never',
examples=EXAMPLES,
cache_examples=False,
outputs=[gr.Textbox(label="RESPONSE"), gr.Textbox(label="RELATED QUERIES")],
css=css_code,
title="TI E2E FORUM"
)
interface.launch(debug=True)
launch_interface() |