Spaces:
Runtime error
Runtime error
Ticket Name: TDA2: error when setting conv2dKernelType in import file | |
Query Text: | |
Part Number: TDA2 Hi: I train a SSD model changed from "github.com/tidsp/caffe-jacinto-models/tree/caffe-0.16/trained/object_detection/voc0712",only 1 class detection.I only train the first step "initial" model,not do sparsenowthe,and train is OK.And the test result on caffe-jacinto is OK too. Then I do tidl model import,when it run the quantStatsTool,there jump a exception and temminate the process. But when I delete the "conv2dKernelType=......" line int the import file,the model import process run success,but I use the file "stats_tool_out.bin" to checek result ,the result is wrong. Then I find setting the "conv2dKernelType" value to all 0,ther is no exception, when I setting "conv2dKernelType=......" to not all 0,the exception is appear again.the import log is below: C:\PROCESSOR_SDK_VISION_03_03_00_00\ti_components\algorithms\REL.TIDL.01.01.00.00\modules\ti_dl\utils\tidlModelImport>tidl_model_import.out.exe ..\..\test\testvecs\config\import\tidl_import_JDetNet_480x200.txt Caffe Network File : ..\..\test\testvecs\config\caffe_modesl\ssd480x200\initial\deploy.prototxt Caffe Model File : ..\..\test\testvecs\config\caffe_modesl\ssd480x200\initial\ssd480x200_initial_iter_66000.caffemodel TIDL Network File : ..\..\test\testvecs\config\tidl_models\tidl_net_jdetNet_480x200_ssd.bin TIDL Model File : ..\..\test\testvecs\config\tidl_models\tidl_param_jdetNet_480x200_ssd.bin Name of the Network : ssdJacintoNetV2_test Num Inputs : 1 Could not find detection_out Params Num of Layer Detected : 49 0, TIDL_DataLayer , data 0, -1 , 1 , x , x , x , x , x , x , x , x , 0 , 0 , 0 , 0 , 0 , 1 , 3 , 200 , 480 , 0 , 1, TIDL_BatchNormLayer , data/bias 1, 1 , 1 , 0 , x , x , x , x , x , x , x , 1 , 1 , 3 , 200 , 480 , 1 , 3 , 200 , 480 , 288000 , 2, TIDL_ConvolutionLayer , conv1a 1, 1 , 1 , 1 , x , x , x , x , x , x , x , 2 , 1 , 3 , 200 , 480 , 1 , 32 , 100 , 240 , 57600000 , 3, TIDL_ConvolutionLayer , conv1b 1, 1 , 1 , 2 , x , x , x , x , x , x , x , 3 , 1 , 32 , 100 , 240 , 1 , 32 , 50 , 120 , 55296000 , 4, TIDL_ConvolutionLayer , res2a_branch2a 1, 1 , 1 , 3 , x , x , x , x , x , x , x , 4 , 1 , 32 , 50 , 120 , 1 , 64 , 50 , 120 , 110592000 , 5, TIDL_ConvolutionLayer , res2a_branch2b 1, 1 , 1 , 4 , x , x , x , x , x , x , x , 5 , 1 , 64 , 50 , 120 , 1 , 64 , 25 , 60 , 55296000 , 6, TIDL_ConvolutionLayer , res3a_branch2a 1, 1 , 1 , 5 , x , x , x , x , x , x , x , 6 , 1 , 64 , 25 , 60 , 1 , 128 , 25 , 60 , 110592000 , 7, TIDL_ConvolutionLayer , res3a_branch2b 1, 1 , 1 , 6 , x , x , x , x , x , x , x , 7 , 1 , 128 , 25 , 60 , 1 , 128 , 25 , 60 , 55296000 , 8, TIDL_PoolingLayer , pool3 1, 1 , 1 , 7 , x , x , x , x , x , x , x , 8 , 1 , 128 , 25 , 60 , 1 , 128 , 13 , 30 , 199680 , 9, TIDL_ConvolutionLayer , res4a_branch2a 1, 1 , 1 , 8 , x , x , x , x , x , x , x , 9 , 1 , 128 , 13 , 30 , 1 , 256 , 13 , 30 , 115015680 , 10, TIDL_ConvolutionLayer , res4a_branch2b 1, 1 , 1 , 9 , x , x , x , x , x , x , x , 10 , 1 , 256 , 13 , 30 , 1 , 256 , 6 , 15 , 57507840 , 11, TIDL_ConvolutionLayer , res5a_branch2a 1, 1 , 1 , 10 , x , x , x , x , x , x , x , 11 , 1 , 256 , 6 , 15 , 1 , 512 , 6 , 15 , 106168320 , 12, TIDL_ConvolutionLayer , res5a_branch2b 1, 1 , 1 , 11 , x , x , x , x , x , x , x , 12 , 1 , 512 , 6 , 15 , 1 , 512 , 6 , 15 , 53084160 , 13, TIDL_PoolingLayer , pool6 1, 1 , 1 , 12 , x , x , x , x , x , x , x , 13 , 1 , 512 , 6 , 15 , 1 , 512 , 3 , 8 , 49152 , 14, TIDL_PoolingLayer , pool7 1, 1 , 1 , 13 , x , x , x , x , x , x , x , 14 , 1 , 512 , 3 , 8 , 1 , 512 , 2 , 4 , 16384 , 15, TIDL_PoolingLayer , pool8 1, 1 , 1 , 14 , x , x , x , x , x , x , x , 15 , 1 , 512 , 2 , 4 , 1 , 512 , 1 , 2 , 4096 , 16, TIDL_ConvolutionLayer , ctx_output1 1, 1 , 1 , 7 , x , x , x , x , x , x , x , 16 , 1 , 128 , 25 , 60 , 1 , 256 , 25 , 60 , 49152000 , 17, TIDL_ConvolutionLayer , ctx_output2 1, 1 , 1 , 12 , x , x , x , x , x , x , x , 17 , 1 , 512 , 6 , 15 , 1 , 256 , 6 , 15 , 11796480 , 18, TIDL_ConvolutionLayer , ctx_output3 1, 1 , 1 , 13 , x , x , x , x , x , x , x , 18 , 1 , 512 , 3 , 8 , 1 , 256 , 3 , 8 , 3145728 , 19, TIDL_ConvolutionLayer , ctx_output4 1, 1 , 1 , 14 , x , x , x , x , x , x , x , 19 , 1 , 512 , 2 , 4 , 1 , 256 , 2 , 4 , 1048576 , 20, TIDL_ConvolutionLayer , ctx_output5 1, 1 , 1 , 15 , x , x , x , x , x , x , x , 20 , 1 , 512 , 1 , 2 , 1 , 256 , 1 , 2 , 262144 , 21, TIDL_ConvolutionLayer , ctx_output1/relu_mbox_loc 1, 1 , 1 , 16 , x , x , x , x , x , x , x , 21 , 1 , 256 , 25 , 60 , 1 , 16 , 25 , 60 , 6144000 , 22, TIDL_FlattenLayer , ctx_output1/relu_mbox_loc_perm 2, 1 , 1 , 21 , x , x , x , x , x , x , x , 22 , 1 , 16 , 25 , 60 , 1 , 1 , 1 , 24000 , 1 , 23, TIDL_ConvolutionLayer , ctx_output1/relu_mbox_conf 1, 1 , 1 , 16 , x , x , x , x , x , x , x , 23 , 1 , 256 , 25 , 60 , 1 , 8 , 25 , 60 , 3072000 , 24, TIDL_FlattenLayer , ctx_output1/relu_mbox_conf_perm 2, 1 , 1 , 23 , x , x , x , x , x , x , x , 24 , 1 , 8 , 25 , 60 , 1 , 1 , 1 , 12000 , 1 , 26, TIDL_ConvolutionLayer , ctx_output2/relu_mbox_loc 1, 1 , 1 , 17 , x , x , x , x , x , x , x , 26 , 1 , 256 , 6 , 15 , 1 , 24 , 6 , 15 , 552960 , 27, TIDL_FlattenLayer , ctx_output2/relu_mbox_loc_perm 2, 1 , 1 , 26 , x , x , x , x , x , x , x , 27 , 1 , 24 , 6 , 15 , 1 , 1 , 1 , 2160 , 1 , 28, TIDL_ConvolutionLayer , ctx_output2/relu_mbox_conf 1, 1 , 1 , 17 , x , x , x , x , x , x , x , 28 , 1 , 256 , 6 , 15 , 1 , 12 , 6 , 15 , 276480 , 29, TIDL_FlattenLayer , ctx_output2/relu_mbox_conf_perm 2, 1 , 1 , 28 , x , x , x , x , x , x , x , 29 , 1 , 12 , 6 , 15 , 1 , 1 , 1 , 1080 , 1 , 31, TIDL_ConvolutionLayer , ctx_output3/relu_mbox_loc 1, 1 , 1 , 18 , x , x , x , x , x , x , x , 31 , 1 , 256 , 3 , 8 , 1 , 24 , 3 , 8 , 147456 , 32, TIDL_FlattenLayer , ctx_output3/relu_mbox_loc_perm 2, 1 , 1 , 31 , x , x , x , x , x , x , x , 32 , 1 , 24 , 3 , 8 , 1 , 1 , 1 , 576 , 1 , 33, TIDL_ConvolutionLayer , ctx_output3/relu_mbox_conf 1, 1 , 1 , 18 , x , x , x , x , x , x , x , 33 , 1 , 256 , 3 , 8 , 1 , 12 , 3 , 8 , 73728 , 34, TIDL_FlattenLayer , ctx_output3/relu_mbox_conf_perm 2, 1 , 1 , 33 , x , x , x , x , x , x , x , 34 , 1 , 12 , 3 , 8 , 1 , 1 , 1 , 288 , 1 , 36, TIDL_ConvolutionLayer , ctx_output4/relu_mbox_loc 1, 1 , 1 , 19 , x , x , x , x , x , x , x , 36 , 1 , 256 , 2 , 4 , 1 , 24 , 2 , 4 , 49152 , 37, TIDL_FlattenLayer , ctx_output4/relu_mbox_loc_perm 2, 1 , 1 , 36 , x , x , x , x , x , x , x , 37 , 1 , 24 , 2 , 4 , 1 , 1 , 1 , 192 , 1 , 38, TIDL_ConvolutionLayer , ctx_output4/relu_mbox_conf 1, 1 , 1 , 19 , x , x , x , x , x , x , x , 38 , 1 , 256 , 2 , 4 , 1 , 12 , 2 , 4 , 24576 , 39, TIDL_FlattenLayer , ctx_output4/relu_mbox_conf_perm 2, 1 , 1 , 38 , x , x , x , x , x , x , x , 39 , 1 , 12 , 2 , 4 , 1 , 1 , 1 , 96 , 1 , 41, TIDL_ConvolutionLayer , ctx_output5/relu_mbox_loc 1, 1 , 1 , 20 , x , x , x , x , x , x , x , 41 , 1 , 256 , 1 , 2 , 1 , 16 , 1 , 2 , 8192 , 42, TIDL_FlattenLayer , ctx_output5/relu_mbox_loc_perm 2, 1 , 1 , 41 , x , x , x , x , x , x , x , 42 , 1 , 16 , 1 , 2 , 1 , 1 , 1 , 32 , 1 , 43, TIDL_ConvolutionLayer , ctx_output5/relu_mbox_conf 1, 1 , 1 , 20 , x , x , x , x , x , x , x , 43 , 1 , 256 , 1 , 2 , 1 , 8 , 1 , 2 , 4096 , 44, TIDL_FlattenLayer , ctx_output5/relu_mbox_conf_perm 2, 1 , 1 , 43 , x , x , x , x , x , x , x , 44 , 1 , 8 , 1 , 2 , 1 , 1 , 1 , 16 , 1 , 46, TIDL_ConcatLayer , mbox_loc_5headers 2, 5 , 1 , 22 , 27 , 32 , 37 , 42 , x , x , x , 46 , 1 , 1 , 1 , 24000 , 1 , 1 , 1 , 26960 , 1 , 47, TIDL_ConcatLayer , mbox_conf_5headers 2, 5 , 1 , 24 , 29 , 34 , 39 , 44 , x , x , x , 47 , 1 , 1 , 1 , 12000 , 1 , 1 , 1 , 13480 , 1 , 48, TIDL_DetectionOutputLayer , detection_out 2, 2 , 1 , 46 , 47 , x , x , x , x , x , x , 48 , 1 , 1 , 1 , 26960 , 1 , 1 , 1 , 560 , 1 , Total Giga Macs : 0.8528 Processing config file .\tempDir\qunat_stats_config.txt ! 0, TIDL_DataLayer , 0, -1 , 1 , x , x , x , x , x , x , x , x , 0 , 0 , 0 , 0 , 0 , 1 , 3 , 200 , 480 , 1, TIDL_BatchNormLayer , 1, 1 , 1 , 0 , x , x , x , x , x , x , x , 1 , 1 , 3 , 200 , 480 , 1 , 3 , 200 , 480 , 2, TIDL_ConvolutionLayer , 1, 1 , 1 , 1 , x , x , x , x , x , x , x , 2 , 1 , 3 , 200 , 480 , 1 , 32 , 100 , 240 , 3, TIDL_ConvolutionLayer , 1, 1 , 1 , 2 , x , x , x , x , x , x , x , 3 , 1 , 32 , 100 , 240 , 1 , 32 , 50 , 120 , 4, TIDL_ConvolutionLayer , 1, 1 , 1 , 3 , x , x , x , x , x , x , x , 4 , 1 , 32 , 50 , 120 , 1 , 64 , 50 , 120 , 5, TIDL_ConvolutionLayer , 1, 1 , 1 , 4 , x , x , x , x , x , x , x , 5 , 1 , 64 , 50 , 120 , 1 , 64 , 25 , 60 , 6, TIDL_ConvolutionLayer , 1, 1 , 1 , 5 , x , x , x , x , x , x , x , 6 , 1 , 64 , 25 , 60 , 1 , 128 , 25 , 60 , 7, TIDL_ConvolutionLayer , 1, 1 , 1 , 6 , x , x , x , x , x , x , x , 7 , 1 , 128 , 25 , 60 , 1 , 128 , 25 , 60 , 8, TIDL_PoolingLayer , 1, 1 , 1 , 7 , x , x , x , x , x , x , x , 8 , 1 , 128 , 25 , 60 , 1 , 128 , 13 , 30 , 9, TIDL_ConvolutionLayer , 1, 1 , 1 , 8 , x , x , x , x , x , x , x , 9 , 1 , 128 , 13 , 30 , 1 , 256 , 13 , 30 , 10, TIDL_ConvolutionLayer , 1, 1 , 1 , 9 , x , x , x , x , x , x , x , 10 , 1 , 256 , 13 , 30 , 1 , 256 , 6 , 15 , 11, TIDL_ConvolutionLayer , 1, 1 , 1 , 10 , x , x , x , x , x , x , x , 11 , 1 , 256 , 6 , 15 , 1 , 512 , 6 , 15 , 12, TIDL_ConvolutionLayer , 1, 1 , 1 , 11 , x , x , x , x , x , x , x , 12 , 1 , 512 , 6 , 15 , 1 , 512 , 6 , 15 , 13, TIDL_PoolingLayer , 1, 1 , 1 , 12 , x , x , x , x , x , x , x , 13 , 1 , 512 , 6 , 15 , 1 , 512 , 3 , 8 , 14, TIDL_PoolingLayer , 1, 1 , 1 , 13 , x , x , x , x , x , x , x , 14 , 1 , 512 , 3 , 8 , 1 , 512 , 2 , 4 , 15, TIDL_PoolingLayer , 1, 1 , 1 , 14 , x , x , x , x , x , x , x , 15 , 1 , 512 , 2 , 4 , 1 , 512 , 1 , 2 , 16, TIDL_ConvolutionLayer , 1, 1 , 1 , 7 , x , x , x , x , x , x , x , 16 , 1 , 128 , 25 , 60 , 1 , 256 , 25 , 60 , 17, TIDL_ConvolutionLayer , 1, 1 , 1 , 12 , x , x , x , x , x , x , x , 17 , 1 , 512 , 6 , 15 , 1 , 256 , 6 , 15 , 18, TIDL_ConvolutionLayer , 1, 1 , 1 , 13 , x , x , x , x , x , x , x , 18 , 1 , 512 , 3 , 8 , 1 , 256 , 3 , 8 , 19, TIDL_ConvolutionLayer , 1, 1 , 1 , 14 , x , x , x , x , x , x , x , 19 , 1 , 512 , 2 , 4 , 1 , 256 , 2 , 4 , 20, TIDL_ConvolutionLayer , 1, 1 , 1 , 15 , x , x , x , x , x , x , x , 20 , 1 , 512 , 1 , 2 , 1 , 256 , 1 , 2 , 21, TIDL_ConvolutionLayer , 1, 1 , 1 , 16 , x , x , x , x , x , x , x , 21 , 1 , 256 , 25 , 60 , 1 , 16 , 25 , 60 , 22, TIDL_FlattenLayer , 1, 1 , 1 , 21 , x , x , x , x , x , x , x , 22 , 1 , 16 , 25 , 60 , 1 , 1 , 1 ,24000 , 23, TIDL_ConvolutionLayer , 1, 1 , 1 , 16 , x , x , x , x , x , x , x , 23 , 1 , 256 , 25 , 60 , 1 , 8 , 25 , 60 , 24, TIDL_FlattenLayer , 1, 1 , 1 , 23 , x , x , x , x , x , x , x , 24 , 1 , 8 , 25 , 60 , 1 , 1 , 1 ,12000 , 25, TIDL_ConvolutionLayer , 1, 1 , 1 , 17 , x , x , x , x , x , x , x , 26 , 1 , 256 , 6 , 15 , 1 , 24 , 6 , 15 , 26, TIDL_FlattenLayer , 1, 1 , 1 , 26 , x , x , x , x , x , x , x , 27 , 1 , 24 , 6 , 15 , 1 , 1 , 1 , 2160 , 27, TIDL_ConvolutionLayer , 1, 1 , 1 , 17 , x , x , x , x , x , x , x , 28 , 1 , 256 , 6 , 15 , 1 , 12 , 6 , 15 , 28, TIDL_FlattenLayer , 1, 1 , 1 , 28 , x , x , x , x , x , x , x , 29 , 1 , 12 , 6 , 15 , 1 , 1 , 1 , 1080 , 29, TIDL_ConvolutionLayer , 1, 1 , 1 , 18 , x , x , x , x , x , x , x , 31 , 1 , 256 , 3 , 8 , 1 , 24 , 3 , 8 , 30, TIDL_FlattenLayer , 1, 1 , 1 , 31 , x , x , x , x , x , x , x , 32 , 1 , 24 , 3 , 8 , 1 , 1 , 1 , 576 , 31, TIDL_ConvolutionLayer , 1, 1 , 1 , 18 , x , x , x , x , x , x , x , 33 , 1 , 256 , 3 , 8 , 1 , 12 , 3 , 8 , 32, TIDL_FlattenLayer , 1, 1 , 1 , 33 , x , x , x , x , x , x , x , 34 , 1 , 12 , 3 , 8 , 1 , 1 , 1 , 288 , 33, TIDL_ConvolutionLayer , 1, 1 , 1 , 19 , x , x , x , x , x , x , x , 36 , 1 , 256 , 2 , 4 , 1 , 24 , 2 , 4 , 34, TIDL_FlattenLayer , 1, 1 , 1 , 36 , x , x , x , x , x , x , x , 37 , 1 , 24 , 2 , 4 , 1 , 1 , 1 , 192 , 35, TIDL_ConvolutionLayer , 1, 1 , 1 , 19 , x , x , x , x , x , x , x , 38 , 1 , 256 , 2 , 4 , 1 , 12 , 2 , 4 , 36, TIDL_FlattenLayer , 1, 1 , 1 , 38 , x , x , x , x , x , x , x , 39 , 1 , 12 , 2 , 4 , 1 , 1 , 1 , 96 , 37, TIDL_ConvolutionLayer , 1, 1 , 1 , 20 , x , x , x , x , x , x , x , 41 , 1 , 256 , 1 , 2 , 1 , 16 , 1 , 2 , 38, TIDL_FlattenLayer , 1, 1 , 1 , 41 , x , x , x , x , x , x , x , 42 , 1 , 16 , 1 , 2 , 1 , 1 , 1 , 32 , 39, TIDL_ConvolutionLayer , 1, 1 , 1 , 20 , x , x , x , x , x , x , x , 43 , 1 , 256 , 1 , 2 , 1 , 8 , 1 , 2 , 40, TIDL_FlattenLayer , 1, 1 , 1 , 43 , x , x , x , x , x , x , x , 44 , 1 , 8 , 1 , 2 , 1 , 1 , 1 , 16 , 41, TIDL_ConcatLayer , 1, 5 , 1 , 22 , 27 , 32 , 37 , 42 , x , x , x , 46 , 1 , 1 , 1 ,24000 , 1 , 1 , 1 ,26960 , 42, TIDL_ConcatLayer , 1, 5 , 1 , 24 , 29 , 34 , 39 , 44 , x , x , x , 47 , 1 , 1 , 1 ,12000 , 1 , 1 , 1 ,13480 , 43, TIDL_DetectionOutputLayer , 1, 2 , 1 , 46 , 47 , x , x , x , x , x , x , 48 , 1 , 1 , 1 ,26960 , 1 , 1 , 1 , 560 , 44, TIDL_DataLayer , 0, 1 , -1 , 48 , x , x , x , x , x , x , x , 0 , 1 , 1 , 1 , 560 , 0 , 0 , 0 , 0 , And my import file is : # Default - 0 randParams = 0 # 0: Caffe, 1: TensorFlow, Default - 0 modelType = 0 # 0: Fixed quantization By tarininng Framework, 1: Dyanamic quantization by TIDL, Default - 1 quantizationStyle = 1 # quantRoundAdd/100 will be added while rounding to integer, Default - 50 quantRoundAdd = 25 numParamBits = 8 # 0 : 8bit Unsigned, 1 : 8bit Signed Default - 1 inElementType = 0 inputNetFile = "..\..\test\testvecs\config\caffe_modesl\ssd480x200\initial\deploy.prototxt inputParamsFile = "..\..\test\testvecs\config\caffe_modesl\ssd480x200\initial\ssd480x200_initial_iter_66000.caffemodel" outputNetFile = "..\..\test\testvecs\config\tidl_models\tidl_net_jdetNet_480x200_ssd.bin" outputParamsFile = "..\..\test\testvecs\config\tidl_models\tidl_param_jdetNet_480x200_ssd.bin" rawSampleInData = 0 preProcType = 4 sampleInData = "..\..\test\testvecs\input\cqh0.jpg" tidlStatsTool = "..\quantStatsTool\eve_test_dl_algo.out.exe" layersGroupId = 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 0 conv2dKernelType = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 #conv2dKernelType = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | |
Responses: | |
Share the deply prototext and caffe model to re-produce the issue Also Post the exception tha you are observing for quick investigation | |
Hi: the exception only has a windows error messagebox,as below: and deploy file and caffe model is follow: model$deploy.7z | |
Hi: I'm sorry,the deploy in .7z pack has some error: the layer name: "mbox_loc_5headers" "shoule change to "mbox_loc"; the layer name: "mbox_conf_5headers" shoule change to "mbox_conf"; the layer name: "mbox_priorbox_5headers" shoule change to "mbox_priorbox"; I trained this model with names without "_5headers",but confuse with some earier deploy file. But after correct those,the exception is still stay same. Regards | |
Hi, We could reproduce the issue. We will debug and provide you the fix. Thanks, Praveen | |
Hi, we found one issue for this specific resolution of 480x200 test case and fixed issue in one source file. Do you have access to TIDL source release so that I can share the fix (two lines of modified code)? Thanks, Praveen | |
Hi: Thanks! I have access to TIDL source release. Regards | |
Okay, then can you please try below fix in tidl_conv2d_base.c file.. at line # 2711, replace below code, numVerBlock = ((imHeight + (tidlConv2dProcHeight-1U)) / tidlConv2dProcHeight); ibufSize = TIDL_conv2dFindIbufSize(blockParams, params->strideW,outElementSize); with this code, numVerBlock = ((imHeight + (tidlConv2dProcHeight-1U)) / tidlConv2dProcHeight); imHeight = tidlConv2dProcHeight * numVerBlock; ibufSize = TIDL_conv2dFindIbufSize(blockParams, params->strideW,outElementSize); and try now? Thanks, Praveen | |
Hi: Thanks!I will try this fix later ,and report the result. Regards | |
Okay thank you.. Regards, Praveen | |