Spaces:
Sleeping
Sleeping
import os | |
from langchain.document_loaders import TextLoader, DirectoryLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.vectorstores import FAISS | |
from sentence_transformers import SentenceTransformer | |
import faiss | |
import torch | |
import numpy as np | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig | |
from datetime import datetime | |
import gradio as gr | |
import re | |
from threading import Thread | |
class MultiDocumentAgentSystem: | |
def __init__(self, documents_dict, model, tokenizer, embeddings): | |
self.model = model | |
self.tokenizer = tokenizer | |
self.embeddings = embeddings | |
self.document_vectors = self.create_document_vectors(documents_dict) | |
def create_document_vectors(self, documents_dict): | |
document_vectors = {} | |
for doc_name, content in documents_dict.items(): | |
vectors = self.embeddings.encode(content, convert_to_tensor=True) | |
document_vectors[doc_name] = vectors | |
return document_vectors | |
def query(self, user_input): | |
query_vector = self.embeddings.encode(user_input, convert_to_tensor=True) | |
# Find the most similar document | |
most_similar_doc = max(self.document_vectors.items(), | |
key=lambda x: torch.cosine_similarity(query_vector, x[1], dim=0)) | |
# Generate response using the most similar document as context | |
response = self.generate_response(user_input, most_similar_doc[0], most_similar_doc[1]) | |
return response | |
def generate_response(self, query, doc_name, doc_vector): | |
prompt = f"Based on the document '{doc_name}', answer the following question: {query}" | |
input_ids = self.tokenizer.encode(prompt, return_tensors="pt").to(self.model.device) | |
with torch.no_grad(): | |
output = self.model.generate(input_ids, max_length=150, num_return_sequences=1) | |
response = self.tokenizer.decode(output[0], skip_special_tokens=True) | |
return response | |
class DocumentRetrievalAndGeneration: | |
def __init__(self, embedding_model_name, lm_model_id, data_folder): | |
self.documents_dict = self.load_documents(data_folder) | |
self.embeddings = SentenceTransformer(embedding_model_name) | |
self.tokenizer, self.model = self.initialize_llm(lm_model_id) | |
self.multi_doc_system = MultiDocumentAgentSystem(self.documents_dict, self.model, self.tokenizer, self.embeddings) | |
def load_documents(self, folder_path): | |
documents_dict = {} | |
for file_name in os.listdir(folder_path): | |
if file_name.endswith('.txt'): | |
file_path = os.path.join(folder_path, file_name) | |
with open(file_path, 'r', encoding='utf-8') as file: | |
content = file.read() | |
documents_dict[file_name[:-4]] = content | |
return documents_dict | |
def initialize_llm(self, model_id): | |
quantization_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_quant_type="nf4", | |
bnb_4bit_compute_dtype=torch.bfloat16 | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
torch_dtype=torch.bfloat16, | |
device_map="auto", | |
quantization_config=quantization_config | |
) | |
return tokenizer, model | |
def generate_response_with_timeout(self, input_ids, max_new_tokens=1000): | |
try: | |
streamer = TextIteratorStreamer(self.tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
input_ids=input_ids, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=1.0, | |
top_k=20, | |
temperature=0.8, | |
repetition_penalty=1.2, | |
eos_token_id=self.tokenizer.eos_token_id, | |
streamer=streamer, | |
) | |
thread = Thread(target=self.model.generate, kwargs=generate_kwargs) | |
thread.start() | |
generated_text = "" | |
for new_text in streamer: | |
generated_text += new_text | |
return generated_text | |
except Exception as e: | |
print(f"Error in generate_response_with_timeout: {str(e)}") | |
return "Text generation process encountered an error" | |
def query_and_generate_response(self, query): | |
response = self.multi_doc_system.query(query) | |
return str(response), "" | |
def qa_infer_gradio(self, query): | |
response, related_queries = self.query_and_generate_response(query) | |
return response, related_queries | |
if __name__ == "__main__": | |
embedding_model_name = 'sentence-transformers/all-MiniLM-L6-v2' | |
lm_model_id = "facebook/opt-350m" # You can change this to a different open-source model | |
data_folder = 'sample_embedding_folder2' | |
doc_retrieval_gen = DocumentRetrievalAndGeneration(embedding_model_name, lm_model_id, data_folder) | |
def launch_interface(): | |
css_code = """ | |
.gradio-container { | |
background-color: #daccdb; | |
} | |
button { | |
background-color: #927fc7; | |
color: black; | |
border: 1px solid black; | |
padding: 10px; | |
margin-right: 10px; | |
font-size: 16px; | |
font-weight: bold; | |
} | |
""" | |
EXAMPLES = [ | |
"On which devices can the VIP and CSI2 modules operate simultaneously?", | |
"I'm using Code Composer Studio 5.4.0.00091 and enabled FPv4SPD16 floating point support for CortexM4 in TDA2. However, after building the project, the .asm file shows --float_support=vfplib instead of FPv4SPD16. Why is this happening?", | |
"Could you clarify the maximum number of cameras that can be connected simultaneously to the video input ports on the TDA2x SoC, considering it supports up to 10 multiplexed input ports and includes 3 dedicated video input modules?" | |
] | |
interface = gr.Interface( | |
fn=doc_retrieval_gen.qa_infer_gradio, | |
inputs=[gr.Textbox(label="QUERY", placeholder="Enter your query here")], | |
allow_flagging='never', | |
examples=EXAMPLES, | |
cache_examples=False, | |
outputs=[gr.Textbox(label="RESPONSE"), gr.Textbox(label="RELATED QUERIES")], | |
css=css_code, | |
title="TI E2E FORUM" | |
) | |
interface.launch(debug=True) | |
launch_interface() |