File size: 8,207 Bytes
c5dd85b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08ecb91
c5dd85b
 
 
 
 
 
8dc8706
 
 
 
c5dd85b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eddd959
c5dd85b
 
 
db67ed2
c5dd85b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import torch
from torch import cuda, bfloat16
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, BitsAndBytesConfig, StoppingCriteria, StoppingCriteriaList
from langchain.llms import HuggingFacePipeline
from langchain.vectorstores import FAISS
from langchain.chains import ConversationalRetrievalChain
import gradio as gr
from langchain.embeddings import HuggingFaceEmbeddings
import os

# Load the Hugging Face token from environment
HF_TOKEN = os.environ.get("HF_TOKEN", None)

# Define stopping criteria
class StopOnTokens(StoppingCriteria):
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        for stop_ids in stop_token_ids:
            if torch.eq(input_ids[0][-len(stop_ids):], stop_ids).all():
                return True
        return False

# Load the LLaMA model and tokenizer
# model_id = 'meta-llama/Meta-Llama-3-8B-Instruct'
# model_id= "meta-llama/Llama-2-7b-chat-hf"
model_id="mistralai/Mistral-7B-Instruct-v0.2"
device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'

# Set quantization configuration
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type='nf4',
    bnb_4bit_use_double_quant=True,
    bnb_4bit_compute_dtype=bfloat16
)

tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", token=HF_TOKEN, quantization_config=bnb_config)

# Define stopping criteria
stop_list = ['\nHuman:', '\n```\n']
stop_token_ids = [tokenizer(x)['input_ids'] for x in stop_list]
stop_token_ids = [torch.LongTensor(x).to(device) for x in stop_token_ids]
stopping_criteria = StoppingCriteriaList([StopOnTokens()])

# Create text generation pipeline
generate_text = pipeline(
    model=model,
    tokenizer=tokenizer,
    return_full_text=True,
    task='text-generation',
    # stopping_criteria=stopping_criteria,
    temperature=0.1,
    max_new_tokens=2048,
    # repetition_penalty=1.1
)

llm = HuggingFacePipeline(pipeline=generate_text)

# Load the stored FAISS index
try:
    vectorstore = FAISS.load_local('faiss_index', HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cuda"}))
    print("Loaded embedding successfully")
except ImportError as e:
    print("FAISS could not be imported. Make sure FAISS is installed correctly.")
    raise e

# Set up the Conversational Retrieval Chain
chain = ConversationalRetrievalChain.from_llm(llm, vectorstore.as_retriever(), return_source_documents=True)

chat_history = []

def format_prompt(query):
    prompt=f"""
    You are a knowledgeable assistant with access to a comprehensive database. 
    I need you to answer my question and provide related information in a specific format.
    I have provided four relatable json files , choose the most suitable chunks for answering the query
    Here's what I need:
    Include a brief final answer without additional comments, sign-offs, or extra phrases. Be direct and to the point.
    
    Here's my question:
    {query}
    """
    # The format I want answer in 
    # user_query ==> query
    # response   ==>  
    # """
    # prompt = f"""
    # You are a knowledgeable assistant with access to a comprehensive database. 
    # I need you to answer my question and provide related information in a specific format.
    # Here's what I need:
    # A brief, general response to my question based on related answers retrieved.
    # Include a brief final answer without additional comments, sign-offs, or extra phrases. Be direct and to the point.
    
    # A JSON-formatted output containing: ALL SOURCE DOCUMENTS
    #    - "question": The ticketName
    #    - "answer": The Responses
    # Here's my question:
    # {query}
    # """
       
    #    - "related_questions": A list of related questions and their answers, each as a dictionary with the keys. Consider all source documents:
    #      - "question": The related question.
    #      - "answer": The related answer.
    
    

    # Example 1:
    # {{
    #     "question": "How to use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM",
    #     "answer": "To use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM, you need to modify the configuration file of the NDK application. Specifically, change the processor reference from 'A15_0' to 'IPU1_0'.",
    #     "related_questions": [
    #         {{
    #             "question": "Can you provide MLBP documentation on TDA2?",
    #             "answer": "MLB is documented for DRA devices in the TRM book, chapter 24.12."
    #         }},
    #         {{
    #             "question": "Hi, could you share me the TDA2x documents about Security(SPRUHS7) and Cryptographic(SPRUHS8) addendums?",
    #             "answer": "Most of TDA2 documents are on ti.com under the product folder."
    #         }},
    #         {{
    #             "question": "Is any one can provide us a way to access CDDS for nessary docs?",
    #             "answer": "Which document are you looking for?"
    #         }},
    #         {{
    #             "question": "What can you tell me about the TDA2 and TDA3 processors? Can they / do they run Linux?",
    #             "answer": "We have moved your post to the appropriate forum."
    #         }}
    #     ]
    # }}

    # Final Answer: To use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM, you need to modify the configuration file of the NDK application. Specifically, change the processor reference from 'A15_0' to 'IPU1_0'.
    
    # Example 2:
    # {{
    #     "question": "Can BQ25896 support I2C interface?",
    #     "answer": "Yes, the BQ25896 charger supports the I2C interface for communication.",
    #     "related_questions": [
    #         {{
    #             "question": "What are the main features of BQ25896?",
    #             "answer": "The BQ25896 features include high-efficiency, fast charging capability, and a wide input voltage range."
    #         }},
    #         {{
    #             "question": "How to configure the BQ25896 for USB charging?",
    #             "answer": "To configure the BQ25896 for USB charging, set the input current limit and the charging current via I2C registers."
    #         }}
    #     ]
    # }}

    # Final Answer: Yes, the BQ25896 charger supports the I2C interface for communication.
    
    # """

    
    return prompt


def qa_infer(query):
    content = ""
    formatted_prompt = format_prompt(query)
    result = chain({"question": formatted_prompt, "chat_history": chat_history})
    for doc in result['source_documents']:
        content += "-" * 50 + "\n"
        content += doc.page_content + "\n"
    print(content)
    print("#" * 100)
    print(result['answer'])
    # return content , result['answer']


    # Save the output to a file
    output_file = "output.txt"
    with open(output_file, "w") as f:
        f.write("Query:\n")
        f.write(query + "\n\n")
        f.write("Answer:\n")
        f.write(result['answer'] + "\n\n")
        f.write("Source Documents:\n")
        f.write(content + "\n")

    # Return the content and answer along with the download link
    download_link = f'<a href="file/{output_file}" download>Download Output File</a>'
    return content, result['answer'], download_link

EXAMPLES = ["to create the TDA2x Board for AVM Applications. And TDA2x Board will be shared with TDA2x and TDA2Eco. Can TDA2Eco and TDA2x be pin-compatible?", 
            "I'm using Code Composer Studio 5.4.0.00091 and enabled FPv4SPD16 floating point support for CortexM4 in TDA2. However, after building the project, the .asm file shows --float_support=vfplib instead of FPv4SPD16. Why is this happening?", 
            "Master core in TDA2XX is a15 and in TDA3XX it is m4,so we have to shift all modules that are being used by a15 in TDA2XX to m4 in TDA3xx."]

demo = gr.Interface(fn=qa_infer, inputs=[gr.Textbox(label="QUERY", placeholder ="Enter your query here")], allow_flagging='never', examples=EXAMPLES, cache_examples=False, outputs=[gr.Textbox(label="RELATED QUERIES"), gr.Textbox(label="SOLUTION"), gr.HTML()])#,outputs="text")
demo.launch()