Spaces:
Sleeping
Sleeping
File size: 14,918 Bytes
f785793 60cf7bb fc583d6 f785793 60cf7bb 6af3380 09e2eff f785793 077ef59 f785793 077ef59 f785793 09192a6 077ef59 f785793 077ef59 09192a6 077ef59 f785793 09e2eff f785793 09e2eff f785793 09e2eff f785793 7b0e6ff 09e2eff f785793 09e2eff f785793 09e2eff 60cf7bb 077ef59 60cf7bb f785793 bab91e6 f785793 bab91e6 f785793 60cf7bb f785793 7b0e6ff f785793 09e2eff 077ef59 09e2eff 5c9cfbf 09e2eff f785793 4c4e574 f785793 09e2eff f785793 09e2eff f785793 60cf7bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
import os
from langchain.document_loaders import TextLoader, DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from sentence_transformers import SentenceTransformer
import faiss
import torch
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, BitsAndBytesConfig
from datetime import datetime
import json
import gradio as gr
class DocumentRetrievalAndGeneration:
def __init__(self, embedding_model_name, lm_model_id, data_folder, faiss_index_path):
self.all_splits = self.load_documents(data_folder)
self.embeddings = SentenceTransformer(embedding_model_name)
self.gpu_index = self.load_faiss_index(faiss_index_path)
self.llm = self.initialize_llm(lm_model_id)
# self.all_splits = self.split_documents()
def load_documents(self, folder_path):
loader = DirectoryLoader(folder_path, loader_cls=TextLoader)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000, chunk_overlap=250)
all_splits = text_splitter.split_documents(documents)
print('Length of documents:', len(documents))
print("LEN of all_splits", len(all_splits))
for i in range(5):
print(all_splits[i].page_content)
return all_splits
def load_faiss_index(self, faiss_index_path):
cpu_index = faiss.read_index(faiss_index_path)
gpu_resource = faiss.StandardGpuResources()
gpu_index = faiss.index_cpu_to_gpu(gpu_resource, 0, cpu_index)
return gpu_index
def initialize_llm(self, model_id):
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config)
tokenizer = AutoTokenizer.from_pretrained(model_id)
generate_text = pipeline(
model=model,
tokenizer=tokenizer,
return_full_text=True,
task='text-generation',
temperature=0.6,
max_new_tokens=256,
)
return generate_text
def query_and_generate_response(self, query):
query_embedding = self.embeddings.encode(query, convert_to_tensor=True).cpu().numpy()
distances, indices = self.gpu_index.search(np.array([query_embedding]), k=5)
content = ""
for idx in indices[0]:
content += "-" * 50 + "\n"
content += self.all_splits[idx].page_content + "\n"
print("CHUNK",idx)
print(self.all_splits[idx].page_content)
print("############################")
prompt=f"""
You are a knowledgeable assistant with access to a comprehensive database.
I need you to answer my question and provide related information in a specific format.
I have provided five relatable json files {content}, choose the most suitable chunks for answering the query
Here's what I need:
Include a final answer without additional comments, sign-offs, or extra phrases. Be direct and to the point.
content
Here's my question:
Query:{query}
Solution==>
Example1
Query: "How to use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM",
Solution: "To use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM, you need to modify the configuration file of the NDK application. Specifically, change the processor reference from 'A15_0' to 'IPU1_0'.",
Example2
Query: "Can BQ25896 support I2C interface?",
Solution: "Yes, the BQ25896 charger supports the I2C interface for communication.",
"""
# prompt = f"Query: {query}\nSolution: {content}\n"
# Encode and prepare inputs
messages = [{"role": "user", "content": prompt}]
encodeds = self.llm.tokenizer.apply_chat_template(messages, return_tensors="pt")
model_inputs = encodeds.to(self.llm.device)
# Perform inference and measure time
start_time = datetime.now()
generated_ids = self.llm.model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
elapsed_time = datetime.now() - start_time
# Decode and return output
decoded = self.llm.tokenizer.batch_decode(generated_ids)
generated_response = decoded[0]
print("Generated response:", generated_response)
print("Time elapsed:", elapsed_time)
print("Device in use:", self.llm.device)
return generated_response, content
def qa_infer_gradio(self, query):
response = self.query_and_generate_response(query)
return response
if __name__ == "__main__":
# Example usage
embedding_model_name = 'flax-sentence-embeddings/all_datasets_v3_MiniLM-L12'
lm_model_id = "mistralai/Mistral-7B-Instruct-v0.2"
data_folder = 'sample_embedding_folder2'
faiss_index_path = 'faiss_index_new_model3.index'
doc_retrieval_gen = DocumentRetrievalAndGeneration(embedding_model_name, lm_model_id, data_folder, faiss_index_path)
# Define Gradio interface function
def launch_interface():
css_code = """
.gradio-container {
background-color: #daccdb;
}
/* Button styling for all buttons */
button {
background-color: #927fc7; /* Default color for all other buttons */
color: black;
border: 1px solid black;
padding: 10px;
margin-right: 10px;
font-size: 16px; /* Increase font size */
font-weight: bold; /* Make text bold */
}
"""
EXAMPLES = ["Can the VIP and CSI2 modules operate simultaneously? ",
"I'm using Code Composer Studio 5.4.0.00091 and enabled FPv4SPD16 floating point support for CortexM4 in TDA2. However, after building the project, the .asm file shows --float_support=vfplib instead of FPv4SPD16. Why is this happening?",
"Could you clarify the maximum number of cameras that can be connected simultaneously to the video input ports on the TDA2x SoC, considering it supports up to 10 multiplexed input ports and includes 3 dedicated video input modules?"]
file_path = "ticketNames.txt"
# Read the file content
with open(file_path, "r") as file:
content = file.read()
ticket_names = json.loads(content)
dropdown = gr.Dropdown(label="Sample queries", choices=ticket_names)
# Define Gradio interface
interface = gr.Interface(
fn=doc_retrieval_gen.qa_infer_gradio,
inputs=[gr.Textbox(label="QUERY", placeholder="Enter your query here")],
allow_flagging='never',
examples=EXAMPLES,
cache_examples=False,
outputs=[gr.Textbox(label="SOLUTION"), gr.Textbox(label="RELATED QUERIES")],
css=css_code
)
# Launch Gradio interface
interface.launch(debug=True)
# Launch the interface
launch_interface()
# import os
# import json
# from langchain.document_loaders import TextLoader, DirectoryLoader
# from langchain.vectorstores import FAISS
# from sentence_transformers import SentenceTransformer
# import faiss
# import torch
# import numpy as np
# from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, BitsAndBytesConfig
# from datetime import datetime
# import gradio as gr
# class DocumentRetrievalAndGeneration:
# def __init__(self, embedding_model_name, lm_model_id, data_folder, faiss_index_path):
# self.documents = self.load_documents(data_folder)
# self.embeddings = SentenceTransformer(embedding_model_name)
# self.gpu_index = self.load_faiss_index(faiss_index_path)
# self.llm = self.initialize_llm(lm_model_id)
# def load_documents(self, folder_path):
# loader = DirectoryLoader(folder_path, loader_cls=TextLoader)
# documents = loader.load()
# print('Length of documents:', len(documents))
# return documents
# def load_faiss_index(self, faiss_index_path):
# cpu_index = faiss.read_index(faiss_index_path)
# gpu_resource = faiss.StandardGpuResources()
# gpu_index = faiss.index_cpu_to_gpu(gpu_resource, 0, cpu_index)
# return gpu_index
# def initialize_llm(self, model_id):
# bnb_config = BitsAndBytesConfig(
# load_in_4bit=True,
# bnb_4bit_use_double_quant=True,
# bnb_4bit_quant_type="nf4",
# bnb_4bit_compute_dtype=torch.bfloat16
# )
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config)
# tokenizer = AutoTokenizer.from_pretrained(model_id)
# generate_text = pipeline(
# model=model,
# tokenizer=tokenizer,
# return_full_text=True,
# task='text-generation',
# temperature=0.6,
# max_new_tokens=2048,
# )
# return generate_text
# def query_and_generate_response(self, query):
# query_embedding = self.embeddings.encode(query, convert_to_tensor=True).cpu().numpy()
# distances, indices = self.gpu_index.search(np.array([query_embedding]), k=5)
# # content = ""
# # for idx in indices[0]:
# # content += "-" * 50 + "\n"
# # content += self.documents[idx].page_content + "\n"
# # print(self.documents[idx].page_content)
# # print("############################")
# content = ""
# all_splits=build_faiss_index.all_splits
# for idx in indices[0]:
# content += "-" * 50 + "\n"
# content+=all_splits[idx].page_content
# print(all_splits[idx].page_content)
# print("############################")
# prompt=f"""
# You are a knowledgeable assistant with access to a comprehensive database.
# I need you to answer my question and provide related information in a specific format.
# I have provided five relatable json files {content}, choose the most suitable chunks for answering the query
# Here's what I need:
# Include a final answer without additional comments, sign-offs, or extra phrases. Be direct and to the point.
# content
# Here's my question:
# Query:{query}
# Solution==>
# Example1
# Query: "How to use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM",
# Solution: "To use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM, you need to modify the configuration file of the NDK application. Specifically, change the processor reference from 'A15_0' to 'IPU1_0'.",
# Example2
# Query: "Can BQ25896 support I2C interface?",
# Solution: "Yes, the BQ25896 charger supports the I2C interface for communication.",
# """
# # prompt = f"Query: {query}\nSolution: {content}\n"
# # Encode and prepare inputs
# messages = [{"role": "user", "content": prompt}]
# encodeds = self.llm.tokenizer.apply_chat_template(messages, return_tensors="pt")
# model_inputs = encodeds.to(self.llm.device)
# # Perform inference and measure time
# start_time = datetime.now()
# generated_ids = self.llm.model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
# elapsed_time = datetime.now() - start_time
# # Decode and return output
# decoded = self.llm.tokenizer.batch_decode(generated_ids)
# generated_response = decoded[0]
# print("Generated response:", generated_response)
# print("Time elapsed:", elapsed_time)
# print("Device in use:", self.llm.device)
# return generated_response,content
# def qa_infer_gradio(self, query):
# response = self.query_and_generate_response(query)
# return response
# if __name__ == "__main__":
# # Example usage
# embedding_model_name = 'flax-sentence-embeddings/all_datasets_v3_MiniLM-L12'
# lm_model_id = "mistralai/Mistral-7B-Instruct-v0.2"
# data_folder = 'sample_embedding_folder'
# faiss_index_path = 'faiss_index_new_model3.index'
# doc_retrieval_gen = DocumentRetrievalAndGeneration(embedding_model_name, lm_model_id, data_folder, faiss_index_path)
# # Define Gradio interface function
# def launch_interface():
# css_code = """
# .gradio-container {
# background-color: #daccdb;
# }
# /* Button styling for all buttons */
# button {
# background-color: #927fc7; /* Default color for all other buttons */
# color: black;
# border: 1px solid black;
# padding: 10px;
# margin-right: 10px;
# font-size: 16px; /* Increase font size */
# font-weight: bold; /* Make text bold */
# }
# """
# EXAMPLES = ["Does the VIP modules & CSI2 module could work simultaneously? ",
# "I'm using Code Composer Studio 5.4.0.00091 and enabled FPv4SPD16 floating point support for CortexM4 in TDA2. However, after building the project, the .asm file shows --float_support=vfplib instead of FPv4SPD16. Why is this happening?",
# "Could you clarify the maximum number of cameras that can be connected simultaneously to the video input ports on the TDA2x SoC, considering it supports up to 10 multiplexed input ports and includes 3 dedicated video input modules?"]
# file_path = "ticketNames.txt"
# # Read the file content
# with open(file_path, "r") as file:
# content = file.read()
# ticket_names = json.loads(content)
# dropdown = gr.Dropdown(label="Sample queries", choices=ticket_names)
# # Define Gradio interface
# interface = gr.Interface(
# fn=doc_retrieval_gen.qa_infer_gradio,
# inputs=[gr.Textbox(label="QUERY", placeholder="Enter your query here")],
# allow_flagging='never',
# examples=EXAMPLES,
# cache_examples=False,
# outputs=[gr.Textbox(label="SOLUTION"), gr.Textbox(label="RELATED QUERIES")],
# css=css_code
# )
# # Launch Gradio interface
# interface.launch(debug=True)
# # Launch the interface
# launch_interface()
|