TI_demo_E2E / app.py
arjunanand13's picture
Create app.py
c62a6a1 verified
raw
history blame
4.17 kB
import os
import torch
from torch import cuda, bfloat16
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, BitsAndBytesConfig, StoppingCriteria, StoppingCriteriaList
from langchain.llms import HuggingFacePipeline
from langchain.vectorstores import FAISS
from langchain.chains import ConversationalRetrievalChain
import gradio as gr
from langchain.embeddings import HuggingFaceEmbeddings
from sentence_transformers import CrossEncoder
HF_TOKEN = os.environ.get("HF_TOKEN", None)
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
for stop_ids in stop_token_ids:
if torch.eq(input_ids[0][-len(stop_ids):], stop_ids).all():
return True
return False
model_id = 'meta-llama/Meta-Llama-3-8B-Instruct'
device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type='nf4',
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", token=HF_TOKEN, quantization_config=bnb_config)
stop_list = ['\nHuman:', '\n```\n']
stop_token_ids = [tokenizer(x)['input_ids'] for x in stop_list]
stop_token_ids = [torch.LongTensor(x).to(device) for x in stop_token_ids]
stopping_criteria = StoppingCriteriaList([StopOnTokens()])
generate_text = pipeline(
model=model,
tokenizer=tokenizer,
return_full_text=True,
task='text-generation',
stopping_criteria=stopping_criteria,
temperature=0.1,
max_new_tokens=512,
repetition_penalty=1.1
)
llm = HuggingFacePipeline(pipeline=generate_text)
"""Load the stored FAISS index"""
try:
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cuda"})
vectorstore = FAISS.load_local('faiss_index', embeddings)
print("Loaded embeddings from FAISS Index successfully")
except ImportError as e:
print("FAISS could not be imported. Make sure FAISS is installed correctly.")
raise e
chain = ConversationalRetrievalChain.from_llm(llm, vectorstore.as_retriever(), return_source_documents=True)
chat_history = []
reranker = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
def format_prompt(query):
prompt = f"""
You are a knowledgeable assistant with access to a comprehensive database.
I need you to answer my question and provide related information in a specific format.
Here's what I need:
1. A brief, general response to my question based on related answers retrieved.
2. A JSON-formatted output containing:
- "question": The original question.
- "answer": The detailed answer.
- "related_questions": A list of related questions and their answers, each as a dictionary with the keys:
- "question": The related question.
- "answer": The related answer.
Here's my question:
{query}
Include a brief final answer without additional comments, sign-offs, or extra phrases. Be direct and to the point.
"""
return prompt
def qa_infer(query):
formatted_prompt = format_prompt(query)
results = chain({"question": formatted_prompt, "chat_history": chat_history})
documents = results['source_documents']
query_document_pairs = [[query, doc.page_content] for doc in documents]
scores = reranker.predict(query_document_pairs)
"""Sort documents based on the re-ranker scores"""
ranked_docs = sorted(zip(scores, documents), key=lambda x: x[0], reverse=True)
"""Extract the best document"""
best_doc = ranked_docs[0][1].page_content if ranked_docs else ""
return best_doc
EXAMPLES = ["How to use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM",
"Can BQ25896 support I2C interface?",
"Does TDA2 vout support bt656 8-bit mode?"]
demo = gr.Interface(fn=qa_infer, inputs="text", allow_flagging='never', examples=EXAMPLES, cache_examples=False, outputs="text")
demo.launch()