Spaces:
Sleeping
Sleeping
import os | |
import torch | |
from torch import cuda, bfloat16 | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, BitsAndBytesConfig, StoppingCriteria, StoppingCriteriaList | |
from langchain.llms import HuggingFacePipeline | |
from langchain.vectorstores import FAISS | |
from langchain.chains import ConversationalRetrievalChain | |
import gradio as gr | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from sentence_transformers import CrossEncoder | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
class StopOnTokens(StoppingCriteria): | |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
for stop_ids in stop_token_ids: | |
if torch.eq(input_ids[0][-len(stop_ids):], stop_ids).all(): | |
return True | |
return False | |
model_id = 'meta-llama/Meta-Llama-3-8B-Instruct' | |
device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu' | |
bnb_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_quant_type='nf4', | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_compute_dtype=bfloat16 | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN) | |
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", token=HF_TOKEN, quantization_config=bnb_config) | |
stop_list = ['\nHuman:', '\n```\n'] | |
stop_token_ids = [tokenizer(x)['input_ids'] for x in stop_list] | |
stop_token_ids = [torch.LongTensor(x).to(device) for x in stop_token_ids] | |
stopping_criteria = StoppingCriteriaList([StopOnTokens()]) | |
generate_text = pipeline( | |
model=model, | |
tokenizer=tokenizer, | |
return_full_text=True, | |
task='text-generation', | |
stopping_criteria=stopping_criteria, | |
temperature=0.1, | |
max_new_tokens=512, | |
repetition_penalty=1.1 | |
) | |
llm = HuggingFacePipeline(pipeline=generate_text) | |
"""Load the stored FAISS index""" | |
try: | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cuda"}) | |
vectorstore = FAISS.load_local('faiss_index', embeddings) | |
print("Loaded embeddings from FAISS Index successfully") | |
except ImportError as e: | |
print("FAISS could not be imported. Make sure FAISS is installed correctly.") | |
raise e | |
chain = ConversationalRetrievalChain.from_llm(llm, vectorstore.as_retriever(), return_source_documents=True) | |
chat_history = [] | |
reranker = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2') | |
def format_prompt(query): | |
prompt = f""" | |
You are a knowledgeable assistant with access to a comprehensive database. | |
I need you to answer my question and provide related information in a specific format. | |
Here's what I need: | |
1. A brief, general response to my question based on related answers retrieved. | |
2. A JSON-formatted output containing: | |
- "question": The original question. | |
- "answer": The detailed answer. | |
- "related_questions": A list of related questions and their answers, each as a dictionary with the keys: | |
- "question": The related question. | |
- "answer": The related answer. | |
Here's my question: | |
{query} | |
Include a brief final answer without additional comments, sign-offs, or extra phrases. Be direct and to the point. | |
""" | |
return prompt | |
def qa_infer(query): | |
formatted_prompt = format_prompt(query) | |
results = chain({"question": formatted_prompt, "chat_history": chat_history}) | |
documents = results['source_documents'] | |
query_document_pairs = [[query, doc.page_content] for doc in documents] | |
scores = reranker.predict(query_document_pairs) | |
"""Sort documents based on the re-ranker scores""" | |
ranked_docs = sorted(zip(scores, documents), key=lambda x: x[0], reverse=True) | |
"""Extract the best document""" | |
best_doc = ranked_docs[0][1].page_content if ranked_docs else "" | |
return best_doc | |
EXAMPLES = ["How to use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM", | |
"Can BQ25896 support I2C interface?", | |
"Does TDA2 vout support bt656 8-bit mode?"] | |
demo = gr.Interface(fn=qa_infer, inputs="text", allow_flagging='never', examples=EXAMPLES, cache_examples=False, outputs="text") | |
demo.launch() | |