Spaces:
Sleeping
Sleeping
arjunanand13
commited on
Create store_embedding.py
Browse files- store_embedding.py +29 -0
store_embedding.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from langchain.document_loaders import TextLoader, DirectoryLoader
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
5 |
+
from langchain.vectorstores import FAISS
|
6 |
+
|
7 |
+
# Set your Hugging Face token
|
8 |
+
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
9 |
+
|
10 |
+
# Load documents
|
11 |
+
loader = DirectoryLoader('data2/text/range/0-5000', loader_cls=TextLoader)
|
12 |
+
documents = loader.load()
|
13 |
+
print('len of documents are', len(documents))
|
14 |
+
|
15 |
+
# Split documents into chunks
|
16 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000, chunk_overlap=250)
|
17 |
+
all_splits = text_splitter.split_documents(documents)
|
18 |
+
print("Length of all_splits:", len(all_splits))
|
19 |
+
|
20 |
+
# Generate embeddings
|
21 |
+
model_name = "sentence-transformers/all-mpnet-base-v2"
|
22 |
+
model_kwargs = {"device": "cuda"}
|
23 |
+
embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs)
|
24 |
+
|
25 |
+
# Store embeddings in the vector store
|
26 |
+
vectorstore = FAISS.from_documents(all_splits, embeddings)
|
27 |
+
vectorstore.save_local('faiss_index')
|
28 |
+
|
29 |
+
print("Embeddings stored successfully!")
|