File size: 7,235 Bytes
45c21ee
 
 
1096b40
45c21ee
 
 
 
 
9d8f34f
208bfe1
3c196c1
4ec829a
 
d8188b2
 
 
522a83e
4ec829a
45e36be
7fd2422
8a49f41
 
 
 
 
 
 
 
 
89fd449
8a49f41
 
 
79caef1
 
 
 
b216009
208bfe1
b216009
 
 
1096b40
79caef1
b216009
 
 
 
 
 
 
 
1096b40
79caef1
b216009
 
1096b40
79caef1
b216009
 
 
 
029cd9d
9d8f34f
 
 
 
029cd9d
9d8f34f
 
 
 
029cd9d
79caef1
45c21ee
 
 
 
1096b40
45c21ee
 
 
79caef1
45c21ee
1096b40
 
45c21ee
 
 
1096b40
 
79caef1
1096b40
208bfe1
 
 
 
 
 
1096b40
 
 
 
79caef1
1096b40
 
 
79caef1
1096b40
208bfe1
1096b40
 
 
 
 
029cd9d
45c21ee
e085056
79caef1
7f4a21e
9a7606b
029cd9d
 
 
 
 
 
 
 
 
9d8f34f
e085056
2267f29
1096b40
 
 
 
 
 
029cd9d
1096b40
ba5c420
1096b40
 
 
 
 
89fd449
1096b40
 
029cd9d
 
 
 
 
 
bd2c7b2
029cd9d
 
 
 
 
1096b40
 
029cd9d
 
 
 
 
1096b40
 
029cd9d
 
bd2c7b2
029cd9d
 
 
1096b40
029cd9d
1096b40
 
 
 
 
79caef1
1096b40
ef85e64
029cd9d
b216009
029cd9d
 
 
b216009
029cd9d
 
 
 
 
 
 
 
 
e085056
 
 
 
 
 
 
 
4c740e1
 
 
 
 
 
 
 
 
 
e085056
 
 
79caef1
8a49f41
029cd9d
372d193
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import os
import random
import uuid
import json
import gradio as gr
import numpy as np
from PIL import Image
import spaces
import torch
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler

#Load the HTML content
#html_file_url = "https://prithivmlmods-hamster-static.static.hf.space/index.html"
#html_content = f'<iframe src="{html_file_url}" style="width:100%; height:180px; border:none;"></iframe>'
#html_file_url = "https://prithivmlmods-static-loading-theme.static.hf.space/index.html"

html_file_url = "https://prithivmlmods-hamster-static.static.hf.space/index.html"
html_content = f'<iframe src="{html_file_url}" style="width:100%; height:400px; border:none"></iframe>'

DESCRIPTIONx = """## STABLE HAMSTER
"""
css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
footer {
    visibility: hidden
}
'''

examples = [
    "3d image, cute girl, in the style of Pixar --ar 1:2 --stylize 750, 4K resolution highlights, Sharp focus, octane render, ray tracing, Ultra-High-Definition, 8k, UHD, HDR, (Masterpiece:1.5), (best quality:1.5)",
    "Kids going to school, Anime style"
]

#Set an os.Getenv variable
#set VAR_NAME=”VALUE”
#Fetch an environment variable
#echo %VAR_NAME%
MODEL_ID = os.getenv("MODEL_REPO")
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))  # Allow generating multiple images at once

#Load model outside of function
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
pipe = StableDiffusionXLPipeline.from_pretrained(
    MODEL_ID,
    torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
    use_safetensors=True,
    add_watermarker=False,
).to(device)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)

# <compile speedup >
if USE_TORCH_COMPILE:
    pipe.compile()

# Offloading capacity (RAM)
if ENABLE_CPU_OFFLOAD:
    pipe.enable_model_cpu_offload()

MAX_SEED = np.iinfo(np.int32).max

def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

@spaces.GPU(duration=60, enable_queue=True)
def generate(
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    seed: int = 1,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 3,
    num_inference_steps: int = 25,
    randomize_seed: bool = False,
    use_resolution_binning: bool = True, 
    num_images: int = 1,  # Number of images to generate
    progress=gr.Progress(track_tqdm=True),
):
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator(device=device).manual_seed(seed)

    #Options 
    options = {
        "prompt": [prompt] * num_images,
        "negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
        "width": width,
        "height": height,
        "guidance_scale": guidance_scale,
        "num_inference_steps": num_inference_steps,
        "generator": generator,
        "output_type": "pil",
    }

    #VRAM usage Lesser
    if use_resolution_binning:
        options["use_resolution_binning"] = True

    #Images potential batches
    images = []
    for i in range(0, num_images, BATCH_SIZE):
        batch_options = options.copy()
        batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
        if "negative_prompt" in batch_options:
            batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
        images.extend(pipe(**batch_options).images)

    image_paths = [save_image(img) for img in images]
    return image_paths, seed
#Main gr.Block
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
    gr.Markdown(DESCRIPTIONx)
    with gr.Group():
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        result = gr.Gallery(label="Result", columns=1, show_label=False) 
    with gr.Accordion("Advanced options", open=False, visible=False):
        num_images = gr.Slider(
            label="Number of Images",
            minimum=1,
            maximum=4,
            step=1,
            value=1,
        )
        with gr.Row():
            use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=5,
                lines=4,
                placeholder="Enter a negative prompt",
                value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
                visible=True,
            )
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        with gr.Row(visible=True):
            width = gr.Slider(
                label="Width",
                minimum=512,
                maximum=MAX_IMAGE_SIZE,
                step=64,
                value=1024,
            )
            height = gr.Slider(
                label="Height",
                minimum=512,
                maximum=MAX_IMAGE_SIZE,
                step=64,
                value=1024,
            )
        with gr.Row():
            guidance_scale = gr.Slider(
                label="Guidance Scale",
                minimum=0.1,
                maximum=6,
                step=0.1,
                value=3.0,
            )
            num_inference_steps = gr.Slider(
                label="Number of inference steps",
                minimum=1,
                maximum=25,
                step=1,
                value=20,
            )

    gr.Examples(
        examples=examples,
        inputs=prompt,
        cache_examples=False
    )

    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        api_name=False,
    )

    gr.on(
        triggers=[
            prompt.submit,
            negative_prompt.submit,
            run_button.click,
        ],
        fn=generate,
        inputs=[
            prompt,
            negative_prompt,
            use_negative_prompt,
            seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            randomize_seed,
            num_images
        ],
        outputs=[result, seed],
        api_name="run",
    )   
    gr.HTML(html_content)
if __name__ == "__main__":
    demo.queue(max_size=50).launch()