File size: 13,779 Bytes
45c21ee
 
 
71e23f9
45c21ee
 
 
 
 
71e23f9
 
8a49f41
71e23f9
38bf7a6
b216009
208bfe1
b216009
 
 
1096b40
71e23f9
b216009
 
 
 
 
 
 
 
1096b40
79caef1
b216009
 
1096b40
79caef1
b216009
 
 
 
71e23f9
 
 
 
 
 
 
 
 
 
 
029cd9d
9d8f34f
 
 
 
029cd9d
9d8f34f
 
 
 
029cd9d
71e23f9
45c21ee
 
 
 
71e23f9
45c21ee
 
71e23f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45c21ee
71e23f9
 
 
 
45c21ee
 
71e23f9
 
45c21ee
71e23f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
029cd9d
71e23f9
 
 
 
1096b40
71e23f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
029cd9d
71e23f9
 
 
 
 
 
029cd9d
71e23f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1096b40
71e23f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
029cd9d
b216009
71e23f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
029cd9d
71e23f9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
import os
import random
import uuid

import gradio as gr
import numpy as np
from PIL import Image
import spaces
import torch
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler, StableDiffusion3Img2ImgPipeline
from huggingface_hub import snapshot_download

huggingface_token = os.getenv("HUGGINGFACE_TOKEN")

MODEL_ID = os.getenv("MODEL_REPO")
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))  # Allow generating multiple images at once

# Load model outside of function
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
pipe = StableDiffusionXLPipeline.from_pretrained(
    MODEL_ID,
    torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
    use_safetensors=True,
    add_watermarker=False,
).to(device)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)

# <compile speedup >
if USE_TORCH_COMPILE:
    pipe.compile()

# Offloading capacity (RAM)
if ENABLE_CPU_OFFLOAD:
    pipe.enable_model_cpu_offload()

MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = False

DESCRIPTION = """# Stable Diffusion XL"""
if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>"

def load_pipeline(pipeline_type):
    if pipeline_type == "text2img":
        return pipe
    elif pipeline_type == "img2img":
        return StableDiffusion3Img2ImgPipeline.from_pretrained(MODEL_ID, torch_dtype=torch.float16)

def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

@spaces.GPU
def generate(
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 7,
    randomize_seed: bool = False,
    num_inference_steps=30,
    NUM_IMAGES_PER_PROMPT=1,
    use_resolution_binning: bool = True,
    progress=gr.Progress(track_tqdm=True),
):
    pipe = load_pipeline("text2img")
    pipe.to(device)
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator().manual_seed(seed)

    if not use_negative_prompt:
        negative_prompt = None  # type: ignore

    output = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        width=width,
        height=height,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        generator=generator,
        num_images_per_prompt=NUM_IMAGES_PER_PROMPT,
        output_type="battery",
    ).images

    return output

@spaces.GPU
def img2img_generate(
    prompt: str,
    init_image: gr.Image,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    seed: int = 0,
    guidance_scale: float = 7,
    randomize_seed: bool = False,
    num_inference_steps=30,
    strength: float = 0.8,
    NUM_IMAGES_PER_PROMPT=1,
    use_resolution_binning: bool = True,
    progress=gr.Progress(track_tqdm=True),
):
    pipe = load_pipeline("img2img")
    pipe.to(device)
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator().manual_seed(seed)

    if not use_negative_prompt:
        negative_prompt = None  # type: ignore

    init_image = init_image.resize((768, 768))

    output = pipe(
        prompt=prompt,
        image=init_image,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        generator=generator,
        strength=strength,
        num_images_per_prompt=NUM_IMAGES_PER_PROMPT,
        output_type="battery",
    ).images

    return output

examples = [
    "A cardboard with text 'New York' which is large and sits on a theater stage.",
    "A red sofa on top of a white building.",
    "A painting of an astronaut riding a pig wearing a tutu holding a pink umbrella.",
    "Studio photograph closeup of a chameleon over a black background.",
    "Closeup portrait photo of beautiful goth woman, makeup.",
    "A living room, bright modern Scandinavian style house, large windows.",
    "Portrait photograph of an anthropomorphic tortoise seated on a New York City subway train.",
    "Batman, cute modern Disney style, Pixar 3d portrait, ultra detailed, gorgeous, 3d zbrush, trending on dribbble, 8k render.",
    "Cinnamon bun on the plate, watercolor painting, detailed, brush strokes, light palette, light, cozy.",
    "A lion, colorful, low-poly, cyan and orange eyes, poly-hd, 3d, low-poly game art, polygon mesh, jagged, blocky, wireframe edges, centered composition.",
    "Long exposure photo of Tokyo street, blurred motion, streaks of light, surreal, dreamy, ghosting effect, highly detailed.",
    "A glamorous digital magazine photoshoot, a fashionable model wearing avant-garde clothing, set in a futuristic cyberpunk roof-top environment, with a neon-lit city background, intricate high fashion details, backlit by vibrant city glow, Vogue fashion photography.",
    "Masterpiece, best quality, girl, collarbone, wavy hair, looking at viewer, blurry foreground, upper body, necklace, contemporary, plain pants, intricate, print, pattern, ponytail, freckles, red hair, dappled sunlight, smile, happy."
]

css = '''
.gradio-container{max-width: 1000px !important}
h1{text-align:center}
'''
with gr.Blocks(css=css, theme="snehilsanyal/scikit-learn") as demo:
    with gr.Row():
        with gr.Column():
            gr.HTML(
                """
                <h1 style='text-align: center'>
                Stable Diffusion XL
                </h1>
                """
            )
            gr.HTML(
                """
              
                """
            )

    with gr.Tabs():
        with gr.TabItem("Text to Image"):
            with gr.Group():
                with gr.Row():
                    prompt = gr.Text(
                        label="Prompt",
                        show_label=False,
                        max_lines=1,
                        placeholder="Enter your prompt",
                        container=False,
                    )
                    run_button = gr.Button("Run", scale=0)
                result = gr.Gallery(label="Result", elem_id="gallery", show_label=False)
            with gr.Accordion("Advanced options", open=False):
                with gr.Row():
                    use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
                    negative_prompt = gr.Text(
                        label="Negative prompt",
                        max_lines=1,
                        value="deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW",
                        visible=True,
                    )
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )

                steps = gr.Slider(
                    label="Steps",
                    minimum=0,
                    maximum=60,
                    step=1,
                    value=25,
                )
                number_image = gr.Slider(
                    label="Number of Images",
                    minimum=1,
                    maximum=4,
                    step=1,
                    value=2,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                with gr.Row(visible=True):
                    width = gr.Slider(
                        label="Width",
                        minimum=256,
                        maximum=MAX_IMAGE_SIZE,
                        step=32,
                        value=1024,
                    )
                    height = gr.Slider(
                        label="Height",
                        minimum=256,
                        maximum=MAX_IMAGE_SIZE,
                        step=32,
                        value=1024,
                    )
                with gr.Row():
                    guidance_scale = gr.Slider(
                        label="Guidance Scale",
                        minimum=0.1,
                        maximum=10,
                        step=0.1,
                        value=7.0,
                    )

            gr.Examples(
                examples=examples,
                inputs=prompt,
                outputs=[result],
                fn=generate,
                cache_examples=CACHE_EXAMPLES,
            )

            use_negative_prompt.change(
                fn=lambda x: gr.update(visible=x),
                inputs=use_negative_prompt,
                outputs=negative_prompt,
                api_name=False,
            )

            gr.on(
                triggers=[
                    prompt.submit,
                    negative_prompt.submit,
                    run_button.click,
                ],
                fn=generate,
                inputs=[
                    prompt,
                    negative_prompt,
                    use_negative_prompt,
                    seed,
                    width,
                    height,
                    guidance_scale,
                    randomize_seed,
                    steps,
                    number_image,
                ],
                outputs=[result],
                api_name="run",
            )
        with gr.TabItem("Image to Image"):
            with gr.Group():
                with gr.Row(equal_height=True):
                    with gr.Column(scale=1):
                        img2img_prompt = gr.Text(
                            label="Prompt",
                            show_label=False,
                            max_lines=1,
                            placeholder="Enter your prompt",
                            container=False,
                        )
                        init_image = gr.Image(label="Input Image", type="pil")
                        with gr.Row():
                            img2img_run_button = gr.Button("Generate", variant="primary")
                    with gr.Column(scale=1):
                        img2img_output = gr.Gallery(label="Result", elem_id="gallery")
                with gr.Accordion("Advanced options", open=False):
                    with gr.Row():
                        img2img_use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
                        img2img_negative_prompt = gr.Text(
                            label="Negative prompt",
                            max_lines=1,
                            value="deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW",
                            visible=True,
                        )
                    img2img_seed = gr.Slider(
                        label="Seed",
                        minimum=0,
                        maximum=MAX_SEED,
                        step=1,
                        value=0,
                    )
                    img2img_steps = gr.Slider(
                        label="Steps",
                        minimum=0,
                        maximum=60,
                        step=1,
                        value=25,
                    )
                    img2img_number_image = gr.Slider(
                        label="Number of Images",
                        minimum=1,
                        maximum=4,
                        step=1,
                        value=2,
                    )
                    img2img_randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                    with gr.Row():
                        img2img_guidance_scale = gr.Slider(
                            label="Guidance Scale",
                            minimum=0.1,
                            maximum=10,
                            step=0.1,
                            value=7.0,
                        )
                        strength = gr.Slider(label="Img2Img Strength", minimum=0.0, maximum=1.0, step=0.01, value=0.8)

            img2img_use_negative_prompt.change(
                fn=lambda x: gr.update(visible=x),
                inputs=img2img_use_negative_prompt,
                outputs=img2img_negative_prompt,
                api_name=False,
            )

            gr.on(
                triggers=[
                    img2img_prompt.submit,
                    img2img_negative_prompt.submit,
                    img2img_run_button.click,
                ],
                fn=img2img_generate,
                inputs=[
                    img2img_prompt,
                    init_image,
                    img2img_negative_prompt,
                    img2img_use_negative_prompt,
                    img2img_seed,
                    img2img_guidance_scale,
                    img2img_randomize_seed,
                    img2img_steps,
                    strength,
                    img2img_number_image,
                ],
                outputs=[img2img_output],
                api_name="img2img_run",
            )
if __name__ == "__main__":
    demo.queue().launch(show_api=False, debug=False)