ikram
update app
94f83a0
raw
history blame
1.65 kB
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from fastapi import FastAPI, UploadFile, File, HTTPException
import io
from transformers import pipeline
# Initialize FastAPI app
app = FastAPI()
# Load Hugging Face model for text-to-code generation
generator = pipeline("text-generation", model="Salesforce/codegen-350M-mono")
def generate_viz_code(prompt: str) -> str:
"""Generate Python code for visualization based on user prompt."""
response = generator(prompt, max_length=200)
return response[0]["generated_text"]
@app.post("/visualizeHuggingFace")
def visualize_data(file: UploadFile = File(...), prompt: str = ""):
try:
# Ensure the file is an Excel file
if not file.filename.endswith(('.xls', '.xlsx')):
raise HTTPException(status_code=400, detail="Only Excel files (.xls, .xlsx) are supported.")
# Read the uploaded Excel file
contents = file.file.read()
df = pd.read_excel(io.BytesIO(contents))
# Generate visualization code
code = generate_viz_code(prompt)
print("Generated Code:\n", code) # Debug output
# Execute the generated code
exec_globals = {"plt": plt, "sns": sns, "pd": pd, "df": df}
exec(code, exec_globals)
# Save the generated plot
img_path = "visualization.png"
plt.savefig(img_path)
plt.close()
return {"image_path": img_path}
except Exception as e:
return {"error": str(e)}
# Uncomment below to run standalone FastAPI app
# if __name__ == "__main__":
# import uvicorn
# uvicorn.run(app, host="0.0.0.0", port=8000)