File size: 1,652 Bytes
07141a9
 
 
94f83a0
07141a9
94f83a0
8c8c357
6f132c3
bf0a429
 
94f83a0
 
 
07141a9
 
94f83a0
 
 
 
07141a9
 
94f83a0
 
 
 
07141a9
 
 
3d69f10
07141a9
 
 
8653b6c
07141a9
 
 
8c8c357
07141a9
 
 
 
 
 
 
 
 
6f132c3
 
94f83a0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from fastapi import FastAPI, UploadFile, File, HTTPException
import io
from transformers import pipeline

# Initialize FastAPI app
app = FastAPI()

# Load Hugging Face model for text-to-code generation
generator = pipeline("text-generation", model="Salesforce/codegen-350M-mono")

def generate_viz_code(prompt: str) -> str:
    """Generate Python code for visualization based on user prompt."""
    response = generator(prompt, max_length=200)
    return response[0]["generated_text"]

@app.post("/visualizeHuggingFace")
def visualize_data(file: UploadFile = File(...), prompt: str = ""):
    try:
        # Ensure the file is an Excel file
        if not file.filename.endswith(('.xls', '.xlsx')):
            raise HTTPException(status_code=400, detail="Only Excel files (.xls, .xlsx) are supported.")

        # Read the uploaded Excel file
        contents = file.file.read()
        df = pd.read_excel(io.BytesIO(contents))

        # Generate visualization code
        code = generate_viz_code(prompt)
        print("Generated Code:\n", code)  # Debug output

        # Execute the generated code
        exec_globals = {"plt": plt, "sns": sns, "pd": pd, "df": df}
        exec(code, exec_globals)

        # Save the generated plot
        img_path = "visualization.png"
        plt.savefig(img_path)
        plt.close()
        return {"image_path": img_path}
    except Exception as e:
        return {"error": str(e)}

# Uncomment below to run standalone FastAPI app
# if __name__ == "__main__":
#     import uvicorn
#     uvicorn.run(app, host="0.0.0.0", port=8000)