ikraamkb commited on
Commit
ef25d94
·
verified ·
1 Parent(s): 6c0ceb9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -28
app.py CHANGED
@@ -3,10 +3,7 @@ import pdfplumber
3
  import docx
4
  import openpyxl
5
  from pptx import Presentation
6
- import torch
7
- from torchvision import transforms
8
- from torchvision.models.detection import fasterrcnn_resnet50_fpn
9
- from PIL import Image
10
  from transformers import pipeline
11
  import gradio as gr
12
  from fastapi.responses import RedirectResponse
@@ -17,15 +14,6 @@ app = FastAPI()
17
  # Load AI Model for Question Answering
18
  qa_pipeline = pipeline("text2text-generation", model="google/flan-t5-large", tokenizer="google/flan-t5-large", use_fast=True)
19
 
20
- # Load Pretrained Object Detection Model (Torchvision)
21
- model = fasterrcnn_resnet50_fpn(pretrained=True)
22
- model.eval()
23
-
24
- # Image Transformations
25
- transform = transforms.Compose([
26
- transforms.ToTensor()
27
- ])
28
-
29
  # Function to truncate text to 450 tokens
30
  def truncate_text(text, max_tokens=450):
31
  words = text.split()
@@ -60,20 +48,10 @@ def extract_text_from_excel(excel_file):
60
  text.append(" ".join(map(str, row)))
61
  return "\n".join(text)
62
 
63
- # Function to perform object detection using Torchvision
64
  def extract_text_from_image(image_file):
65
- image = Image.open(image_file).convert("RGB")
66
- image_tensor = transform(image).unsqueeze(0)
67
-
68
- with torch.no_grad():
69
- predictions = model(image_tensor)
70
-
71
- detected_objects = []
72
- for label, score in zip(predictions[0]['labels'], predictions[0]['scores']):
73
- if score > 0.7:
74
- detected_objects.append(f"Object {label.item()} detected with confidence {score.item():.2f}")
75
-
76
- return "\n".join(detected_objects) if detected_objects else "No objects detected."
77
 
78
  # Function to answer questions based on document content
79
  def answer_question_from_document(file, question):
@@ -103,7 +81,7 @@ def answer_question_from_document(file, question):
103
  def answer_question_from_image(image, question):
104
  image_text = extract_text_from_image(image)
105
  if not image_text:
106
- return "No meaningful content detected in the image."
107
 
108
  truncated_text = truncate_text(image_text)
109
  input_text = f"Question: {question} Context: {truncated_text}"
@@ -132,4 +110,4 @@ app = gr.mount_gradio_app(app, demo, path="/")
132
 
133
  @app.get("/")
134
  def home():
135
- return RedirectResponse(url="/")
 
3
  import docx
4
  import openpyxl
5
  from pptx import Presentation
6
+ import easyocr
 
 
 
7
  from transformers import pipeline
8
  import gradio as gr
9
  from fastapi.responses import RedirectResponse
 
14
  # Load AI Model for Question Answering
15
  qa_pipeline = pipeline("text2text-generation", model="google/flan-t5-large", tokenizer="google/flan-t5-large", use_fast=True)
16
 
 
 
 
 
 
 
 
 
 
17
  # Function to truncate text to 450 tokens
18
  def truncate_text(text, max_tokens=450):
19
  words = text.split()
 
48
  text.append(" ".join(map(str, row)))
49
  return "\n".join(text)
50
 
 
51
  def extract_text_from_image(image_file):
52
+ reader = easyocr.Reader(["en"])
53
+ result = reader.readtext(image_file)
54
+ return " ".join([res[1] for res in result])
 
 
 
 
 
 
 
 
 
55
 
56
  # Function to answer questions based on document content
57
  def answer_question_from_document(file, question):
 
81
  def answer_question_from_image(image, question):
82
  image_text = extract_text_from_image(image)
83
  if not image_text:
84
+ return "No text detected in the image."
85
 
86
  truncated_text = truncate_text(image_text)
87
  input_text = f"Question: {question} Context: {truncated_text}"
 
110
 
111
  @app.get("/")
112
  def home():
113
+ return RedirectResponse(url="/")