|
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
|
from sentence_transformers import SentenceTransformer
|
|
from pinecone import Pinecone
|
|
|
|
device = 'cpu'
|
|
|
|
|
|
pc = Pinecone(api_key='89eeb534-da10-4068-92f7-12eddeabe1e5')
|
|
|
|
|
|
index_name = 'abstractive-question-answering'
|
|
index = pc.Index(index_name)
|
|
|
|
def load_models():
|
|
print("Loading models...")
|
|
|
|
retriever = SentenceTransformer("flax-sentence-embeddings/all_datasets_v3_mpnet-base")
|
|
tokenizer = T5Tokenizer.from_pretrained('t5-base')
|
|
generator = T5ForConditionalGeneration.from_pretrained('t5-base').to(device)
|
|
|
|
return retriever, generator, tokenizer
|
|
|
|
retriever, generator, tokenizer = load_models()
|
|
|
|
def process_query(query):
|
|
|
|
xq = retriever.encode([query]).tolist()
|
|
xc = index.query(vector=xq, top_k=1, include_metadata=True)
|
|
|
|
|
|
print("Pinecone response:", xc)
|
|
|
|
|
|
if 'matches' in xc and isinstance(xc['matches'], list):
|
|
context = [m['metadata']['Output'] for m in xc['matches']]
|
|
context_str = " ".join(context)
|
|
formatted_query = f"answer the question: {query} context: {context_str}"
|
|
else:
|
|
|
|
context_str = ""
|
|
formatted_query = f"answer the question: {query} context: {context_str}"
|
|
|
|
|
|
output_text = context_str
|
|
if len(output_text.splitlines()) > 5:
|
|
return output_text
|
|
|
|
if output_text.lower() == "none":
|
|
return "The topic is not covered in the student manual."
|
|
|
|
inputs = tokenizer.encode(formatted_query, return_tensors="pt", max_length=512, truncation=True).to(device)
|
|
ids = generator.generate(inputs, num_beams=4, min_length=10, max_length=60, repetition_penalty=1.2)
|
|
answer = tokenizer.decode(ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
|
|
|
return answer
|
|
|