imSleepy commited on
Commit
d79d76a
·
verified ·
1 Parent(s): 728e599

added comments

Browse files
Files changed (1) hide show
  1. chatbot.py +16 -6
chatbot.py CHANGED
@@ -4,48 +4,58 @@ from pinecone import Pinecone
4
 
5
  device = 'cpu'
6
 
 
7
  pc = Pinecone(api_key='89eeb534-da10-4068-92f7-12eddeabe1e5')
8
 
 
9
  index_name = 'abstractive-question-answering'
10
  index = pc.Index(index_name)
11
 
 
12
  def load_models():
13
- print("Loading models...")
14
-
15
  retriever = SentenceTransformer("flax-sentence-embeddings/all_datasets_v3_mpnet-base")
16
  tokenizer = T5Tokenizer.from_pretrained('t5-small')
17
  generator = T5ForConditionalGeneration.from_pretrained('t5-base').to(device)
18
-
19
  return retriever, generator, tokenizer
20
 
21
  retriever, generator, tokenizer = load_models()
22
 
23
  def process_query(query):
 
24
  xq = retriever.encode([query]).tolist()
 
25
  xc = index.query(vector=xq, top_k=1, include_metadata=True)
26
 
27
  print("Pinecone response:", xc)
28
 
 
29
  if 'matches' in xc and isinstance(xc['matches'], list):
30
  context = [m['metadata']['Output'] for m in xc['matches']]
31
  context_str = " ".join(context)
32
  formatted_query = f"answer the question: {query} context: {context_str}"
33
 
34
- # Generate answer using T5 model
35
  output_text = context_str
36
  if len(output_text.splitlines()) > 5:
37
  return output_text
38
 
 
39
  if output_text.lower() == "none":
40
  return "The topic is not covered in the student manual."
41
 
 
42
  inputs = tokenizer.encode(formatted_query, return_tensors="pt", max_length=512, truncation=True).to(device)
 
43
  ids = generator.generate(inputs, num_beams=2, min_length=10, max_length=60, repetition_penalty=1.2)
 
44
  answer = tokenizer.decode(ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
45
 
46
- nli_keywords = ['not_equivalent', 'not_entailment', 'entailment', 'neutral', 'not_enquiry']
47
-
 
48
  if any(keyword in answer.lower() for keyword in nli_keywords):
49
  return context_str
50
 
 
51
  return answer
 
4
 
5
  device = 'cpu'
6
 
7
+ # Calling the pinecone api
8
  pc = Pinecone(api_key='89eeb534-da10-4068-92f7-12eddeabe1e5')
9
 
10
+ # Connect to the Pinecone index for querying and storing vectors
11
  index_name = 'abstractive-question-answering'
12
  index = pc.Index(index_name)
13
 
14
+ # Load the retriever model for sentence embeddings and the T5 model for text generation
15
  def load_models():
16
+ print("Loading models...")
 
17
  retriever = SentenceTransformer("flax-sentence-embeddings/all_datasets_v3_mpnet-base")
18
  tokenizer = T5Tokenizer.from_pretrained('t5-small')
19
  generator = T5ForConditionalGeneration.from_pretrained('t5-base').to(device)
 
20
  return retriever, generator, tokenizer
21
 
22
  retriever, generator, tokenizer = load_models()
23
 
24
  def process_query(query):
25
+ # Encode the query into a vector for semantic search using SentenceTransformer
26
  xq = retriever.encode([query]).tolist()
27
+ # Query the Pinecone index for the most similar vector to the query
28
  xc = index.query(vector=xq, top_k=1, include_metadata=True)
29
 
30
  print("Pinecone response:", xc)
31
 
32
+ # Concatenates the original question with the context extracted from the matched metadata
33
  if 'matches' in xc and isinstance(xc['matches'], list):
34
  context = [m['metadata']['Output'] for m in xc['matches']]
35
  context_str = " ".join(context)
36
  formatted_query = f"answer the question: {query} context: {context_str}"
37
 
38
+ # If the context is longer than 5 lines, return the context extracted from Pinecone directly
39
  output_text = context_str
40
  if len(output_text.splitlines()) > 5:
41
  return output_text
42
 
43
+ # If none, then it will return that it was not covered in the student manual
44
  if output_text.lower() == "none":
45
  return "The topic is not covered in the student manual."
46
 
47
+ # Tokenizes the formatted query
48
  inputs = tokenizer.encode(formatted_query, return_tensors="pt", max_length=512, truncation=True).to(device)
49
+ # Generates an answer using the t5 model
50
  ids = generator.generate(inputs, num_beams=2, min_length=10, max_length=60, repetition_penalty=1.2)
51
+ # Decodes the answer to make it readable for the user
52
  answer = tokenizer.decode(ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
53
 
54
+
55
+ # If it has this words, it will just paste the output from the extracted meta-data output from pinecone
56
+ nli_keywords = ['not_equivalent', 'not_entailment', 'entailment', 'neutral', 'not_enquiry']
57
  if any(keyword in answer.lower() for keyword in nli_keywords):
58
  return context_str
59
 
60
+ # returns the answer
61
  return answer