Spaces:
Sleeping
Sleeping
import gradio as gr | |
from iman.sad_tfpy10 import * | |
import torch | |
from transformers import AutoProcessor, AutoModelForCTC | |
processor = AutoProcessor.from_pretrained("Akashpb13/Central_kurdish_xlsr") | |
model = AutoModelForCTC.from_pretrained("Akashpb13/Central_kurdish_xlsr") | |
import soundfile as sf | |
css = """ | |
textarea { direction: rtl; text-align: right; font-family: Calibri, sans-serif; font-size: 16px;} | |
""" | |
seg = Segmenter(ffmpeg_path="ffmpeg",model_path="keras_speech_music_noise_cnn.hdf5" , device="cpu",vad_type="vad") | |
def process_segment(args): | |
segment, wav = args | |
start, stop = segment | |
# pp = converter((start, stop)) | |
pp = wav[int(start*16000) : int(stop*16000)] | |
input_values =processor(pp, sampling_rate=16000 , return_tensors="pt").input_values | |
with torch.no_grad(): | |
logits=model(input_values).logits | |
predicted_ids = torch.argmax(logits, dim=-1) | |
transcription = processor.batch_decode(predicted_ids)[0] | |
return start, stop, transcription | |
def pcm_to_flac(pcm_data, sample_rate=16000): | |
buffer = io.BytesIO() | |
sf.write(buffer, pcm_data, sample_rate, format='FLAC') | |
flac_data = buffer.getvalue() | |
return flac_data | |
def transcribe_audio(audio_file): | |
text="" | |
isig,wav = seg(audio_file) | |
isig = filter_output(isig , max_silence=0.5 ,ignore_small_speech_segments=0.1 , max_speech_len=15 ,split_speech_bigger_than=20) | |
isig = [(a,b) for x,a,b,_,_ in isig] | |
print(isig) | |
results=[] | |
for segment in isig: | |
results.append (process_segment((segment, wav))) | |
for start, stop, tr_beamsearch_lm in results: | |
try: | |
text += ' ' + tr_beamsearch_lm + '\r\n' | |
print(start) | |
print(stop) | |
print(text) | |
except: | |
pass | |
return text | |
# Define the Gradio interface | |
interface = gr.Interface( | |
fn=transcribe_audio, | |
inputs=gr.Audio(type="filepath"), | |
outputs=gr.Textbox(label="Transcription", elem_id="output-text",interactive=True), | |
title="Soorani Audio Transcription", | |
description="Upload an audio file or record audio to get the transcription.", | |
css=css | |
) | |
# Launch the Gradio app | |
interface.launch() |