Spaces:
Runtime error
Runtime error
File size: 5,343 Bytes
dfae564 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
from keras.models import load_model
from aiohttp import ClientSession
from numpy import expand_dims as np_expand_dims
from captcha_processor import CaptchaProcessor
from asyncio import get_running_loop
from asyncio import sleep as asyncsleep
from random import randint
import aiofiles
model = load_model("model.h5")
proxies = [
#"http://q2adq9_proton_me:[email protected]:8000",
"http://ocjjjsgs:[email protected]:6106"
]
async def get_binary_from_link(link: str) -> bytes:
async with ClientSession() as session:
for _ in range(20):
try:
a = await session.get(link, proxy=proxies[randint(0, len(proxies)-1)])
if int(a.status) == 200:
print("Got binary")
return await a.read()
else:
await asyncsleep(0.125)
except Exception as e:
print(e)
return randint(100000, 999999)
async def predict(url: str, recursion: int = 0, fnfnfn: int = randint(1, 10000000)) -> dict:
binary = await get_binary_from_link(url)
if type(binary) == type(0):
return {
"WARNING": "PROXY RETURNING INVALID IMAGE. CONTACT OWNER IMMEDIATLY.",
"prediction": binary,
"letters_predictions": "PROXY RETURNING INVALID IMAGE. CONTACT OWNER IMMEDIATLY.",
"full_prediction": binary,
"recursion": recursion
}
async with aiofiles.open(f"/root/c-s-api/temp/{fnfnfn}.png", "wb") as outfile:
print(f"Trying to do smth with {fnfnfn}")
await outfile.write(binary)
try:
processor = CaptchaProcessor(binary)
except Exception as e:
if recursion > 10:
return {
"WARNING": "PROXY RETURNING INVALID IMAGE. CONTACT OWNER IMMEDIATLY.",
"prediction": binary,
"letters_predictions": "PROXY RETURNING INVALID IMAGE. CONTACT OWNER IMMEDIATLY.",
"full_prediction": binary,
"recursion": recursion
}
else:
print(f"1, {recursion}, {str(e)}")
return await predict(url, recursion + 1, fnfnfn)
try:
processor.replace_color(processor.get_background_color(), processor.WHITE_RGB)
processor.replace_colors(processor.get_letters_color(), processor.WHITE_RGB)
except Exception as e:
if recursion > 10:
return {
"WARNING": "SOMETHING WENT WRONG. CONTACT OWNER IMMEDIATLY.",
"prediction": binary,
"letters_predictions": "SOMETHING WENT WRONG. CONTACT OWNER IMMEDIATLY.",
"full_prediction": binary,
"recursion": recursion
}
else:
print(f"2, {recursion}, {str(e)}")
return await predict(url, recursion + 1, fnfnfn)
try:
processor.convert_color_space(6)
except Exception as e:
if recursion > 10:
return {
"WARNING": "SOMETHING WENT WRONG. CONTACT OWNER IMMEDIATLY.",
"prediction": binary,
"letters_predictions": "SOMETHING WENT WRONG. CONTACT OWNER IMMEDIATLY.",
"full_prediction": binary,
"recursion": recursion
}
else:
print(f"3, {recursion}, {str(e)}")
return await predict(url, recursion + 1, fnfnfn)
try:
processor.threshold()
except Exception as e:
if recursion > 10:
return {
"WARNING": "PROXY RETURNING INVALID IMAGE. CONTACT OWNER IMMEDIATLY.",
"prediction": binary,
"letters_predictions": "PROXY RETURNING INVALID IMAGE. CONTACT OWNER IMMEDIATLY.",
"full_prediction": binary,
"recursion": recursion
}
else:
print(f"4, {recursion}, {str(e)}")
return await predict(url, recursion + 1, fnfnfn)
# processor = CaptchaProcessor(binary)
# processor.replace_color(processor.get_background_color(), processor.WHITE_RGB)
# processor.replace_colors(processor.get_letters_color(), processor.WHITE_RGB)
# processor.convert_color_space(6)
# processor.threshold()
#except Exception as e:
# print(f"error with image, trying again {e}")
# return await predict(url, recursion + 1)
try:
processor.increase_letters_size(2)
except IndexError:
return await predict(url, recursion + 1, fnfnfn)
letters = processor.slice_letters()
if len(letters) != 6: return await predict(url, recursion + 1, fnfnfn)
shorts = []
final = ""
letters_solving = [
get_running_loop().run_in_executor(None, model.predict, np_expand_dims(letter, axis=0))
for letter in letters
]
letters_solving = [await result for result in letters_solving]
fulls = [list(map(lambda x: float(x), letter[0])) for letter in letters_solving]
for prediction in fulls: shorts.append(prediction.index(max(*prediction)))
for short in shorts: final += str(short)
return {
"prediction": final,
"letters_predictions": shorts,
"full_prediction": fulls,
"recursion": recursion
}
|