File size: 4,058 Bytes
dfae564
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import cv2
from numpy import asarray as np_as_array
from numpy import all as np_all


class CaptchaProcessor:

    WHITE_RGB = (255, 255, 255)

    def __init__(self, data: bytes):
        self.img = cv2.imdecode(
            np_as_array(bytearray(data), dtype="uint8"),
            cv2.IMREAD_ANYCOLOR
        )

    def threshold(self):
        self.img = cv2.threshold(self.img, 0, 255, cv2.THRESH_OTSU)[1]

    def convert_color_space(self, target_space: int):
        self.img = cv2.cvtColor(self.img, target_space)

    def get_background_color(self) -> tuple:
        return tuple(self.img[0, 0])

    def resize(self, x: int, y: int):
        self.img = cv2.resize(self.img, (x, y))

    def save(self, name: str):
        cv2.imwrite(name, self.img)

    def get_letters_color(self) -> tuple:
        colors = []
        for y in range(self.img.shape[1]):
            for x in range(self.img.shape[0]):
                color = tuple(self.img[x, y])
                if color != self.WHITE_RGB: colors.append(color)
        return max(set(colors), key=colors.count)

    def replace_color(self, target: tuple, to: tuple):
        self.img[np_all(self.img == target, axis=-1)] = to

    def replace_colors(self, exception: tuple, to: tuple):
        self.img[np_all(self.img != exception, axis=-1)] = to

    def increase_contrast(self, alpha: float, beta: float):
        self.img = cv2.convertScaleAbs(self.img, alpha=alpha, beta=beta)

    def increase_letters_size(self, add_pixels: int):
        pixels = []
        for y in range(self.img.shape[1]):
            for x in range(self.img.shape[0]):
                if self.img[x, y] == 0: pixels.append((x, y))
        for y, x in pixels:
            for i in range(1, add_pixels + 1):
                self.img[y + i, x] = 0
                self.img[y - i, x] = 0
                self.img[y, x + i] = 0
                self.img[y, x - i] = 0
                self.img[y + i, x] = 0
                self.img[y - i, x] = 0
                self.img[y, x + i] = 0
                self.img[y, x - i] = 0

    # Отдаление символов друг от друга
    # Может многократно повысить точность, но я так и не придумал правильную реализацию
    def distance_letters(self, cf: float):
        pixels = []
        for y in range(self.img.shape[1]):
            for x in range(self.img.shape[0]):
                if self.img[x, y] == 0: pixels.append((x, y))
        for y, x in pixels:
            self.img[y, x] = 255
            center = self.img.shape[1] / 2
            z = self.img.shape[1] / x
            if z >= 2: self.img[y, x - int((900 // x) * cf)] = 0
            else: self.img[y, x + int((900 // x) * cf)] = 0

    def slice_letters(self):
        contours, hierarchy = cv2.findContours(self.img, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
        letter_image_regions = []
        letters = []
        for idx, contour in enumerate(contours):
            if hierarchy[0][idx][3] != 0: continue
            (x, y, w, h) = cv2.boundingRect(contour)
            if w / h > 1.5:
                half_width = int(w / 2)
                letter_image_regions.append((idx, x, y, half_width, h))
                letter_image_regions.append((idx, x + half_width, y, half_width, h))
            else:
                letter_image_regions.append((idx, x, y, w, h))
        letter_image_regions = sorted(letter_image_regions, key=lambda z: z[1])
        for _, x, y, w, h in letter_image_regions:
            frame = self.img[y:y + h, x:x + w]
            if frame.shape[1] > 35: continue
            frame = cv2.resize(frame, (20, 40))
            frame = cv2.cvtColor(frame,  cv2.COLOR_RGB2BGR)
            letters.append(frame)
        return letters

    def show(self):
        cv2.imshow("Captcha Processor", self.img)
        cv2.waitKey(0)

    @classmethod
    def from_file_name(cls, name: str):
        file = open(name, "rb")
        processor = cls(file.read())
        file.close()
        return processor