Spaces:
Build error
Build error
# Copyright 2024 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import uuid | |
from typing import TYPE_CHECKING, Any, AsyncGenerator, AsyncIterator, Dict, List, Optional, Sequence, Union | |
from ..data import get_template_and_fix_tokenizer | |
from ..extras.logging import get_logger | |
from ..extras.misc import get_device_count | |
from ..extras.packages import is_vllm_available, is_vllm_version_greater_than_0_5, is_vllm_version_greater_than_0_5_1 | |
from ..model import load_config, load_tokenizer | |
from ..model.model_utils.quantization import QuantizationMethod | |
from ..model.model_utils.visual import LlavaMultiModalProjectorForYiVLForVLLM | |
from .base_engine import BaseEngine, Response | |
if is_vllm_available(): | |
from vllm import AsyncEngineArgs, AsyncLLMEngine, RequestOutput, SamplingParams | |
from vllm.lora.request import LoRARequest | |
if is_vllm_version_greater_than_0_5_1(): | |
pass | |
elif is_vllm_version_greater_than_0_5(): | |
from vllm.multimodal.image import ImagePixelData | |
else: | |
from vllm.sequence import MultiModalData | |
if TYPE_CHECKING: | |
from numpy.typing import NDArray | |
from transformers.image_processing_utils import BaseImageProcessor | |
from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments | |
logger = get_logger(__name__) | |
class VllmEngine(BaseEngine): | |
def __init__( | |
self, | |
model_args: "ModelArguments", | |
data_args: "DataArguments", | |
finetuning_args: "FinetuningArguments", | |
generating_args: "GeneratingArguments", | |
) -> None: | |
config = load_config(model_args) # may download model from ms hub | |
if getattr(config, "quantization_config", None): # gptq models should use float16 | |
quantization_config: Dict[str, Any] = getattr(config, "quantization_config", None) | |
quant_method = quantization_config.get("quant_method", "") | |
if quant_method == QuantizationMethod.GPTQ and model_args.infer_dtype == "auto": | |
model_args.infer_dtype = "float16" | |
self.can_generate = finetuning_args.stage == "sft" | |
tokenizer_module = load_tokenizer(model_args) | |
self.tokenizer = tokenizer_module["tokenizer"] | |
self.processor = tokenizer_module["processor"] | |
self.tokenizer.padding_side = "left" | |
self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args.template, data_args.tool_format) | |
self.generating_args = generating_args.to_dict() | |
engine_args = { | |
"model": model_args.model_name_or_path, | |
"trust_remote_code": True, | |
"download_dir": model_args.cache_dir, | |
"dtype": model_args.infer_dtype, | |
"max_model_len": model_args.vllm_maxlen, | |
"tensor_parallel_size": get_device_count() or 1, | |
"gpu_memory_utilization": model_args.vllm_gpu_util, | |
"disable_log_stats": True, | |
"disable_log_requests": True, | |
"enforce_eager": model_args.vllm_enforce_eager, | |
"enable_lora": model_args.adapter_name_or_path is not None, | |
"max_lora_rank": model_args.vllm_max_lora_rank, | |
} | |
if model_args.visual_inputs: | |
image_size = config.vision_config.image_size | |
patch_size = config.vision_config.patch_size | |
self.image_feature_size = (image_size // patch_size) ** 2 | |
engine_args["image_input_type"] = "pixel_values" | |
engine_args["image_token_id"] = self.tokenizer.convert_tokens_to_ids(self.template.image_token) | |
engine_args["image_input_shape"] = "1,3,{},{}".format(image_size, image_size) | |
engine_args["image_feature_size"] = self.image_feature_size | |
if getattr(config, "is_yi_vl_derived_model", None): | |
import vllm.model_executor.models.llava | |
logger.info("Detected Yi-VL model, applying projector patch.") | |
vllm.model_executor.models.llava.LlavaMultiModalProjector = LlavaMultiModalProjectorForYiVLForVLLM | |
self.model = AsyncLLMEngine.from_engine_args(AsyncEngineArgs(**engine_args)) | |
if model_args.adapter_name_or_path is not None: | |
self.lora_request = LoRARequest("default", 1, model_args.adapter_name_or_path[0]) | |
else: | |
self.lora_request = None | |
async def _generate( | |
self, | |
messages: Sequence[Dict[str, str]], | |
system: Optional[str] = None, | |
tools: Optional[str] = None, | |
image: Optional["NDArray"] = None, | |
**input_kwargs, | |
) -> AsyncIterator["RequestOutput"]: | |
request_id = "chatcmpl-{}".format(uuid.uuid4().hex) | |
if ( | |
self.processor is not None | |
and image is not None | |
and not hasattr(self.processor, "image_seq_length") | |
and self.template.image_token not in messages[0]["content"] | |
): # llava-like models (TODO: paligemma models) | |
messages[0]["content"] = self.template.image_token * self.image_feature_size + messages[0]["content"] | |
paired_messages = messages + [{"role": "assistant", "content": ""}] | |
system = system or self.generating_args["default_system"] | |
prompt_ids, _ = self.template.encode_oneturn( | |
tokenizer=self.tokenizer, messages=paired_messages, system=system, tools=tools | |
) | |
if self.processor is not None and image is not None: # add image features | |
image_processor: "BaseImageProcessor" = getattr(self.processor, "image_processor") | |
pixel_values = image_processor(image, return_tensors="pt")["pixel_values"] | |
if is_vllm_version_greater_than_0_5_1(): | |
multi_modal_data = {"image": pixel_values} | |
elif is_vllm_version_greater_than_0_5(): | |
multi_modal_data = ImagePixelData(image=pixel_values) | |
else: # TODO: remove vllm 0.4.3 support | |
multi_modal_data = MultiModalData(type=MultiModalData.Type.IMAGE, data=pixel_values) | |
else: | |
multi_modal_data = None | |
prompt_length = len(prompt_ids) | |
use_beam_search: bool = self.generating_args["num_beams"] > 1 | |
temperature: Optional[float] = input_kwargs.pop("temperature", None) | |
top_p: Optional[float] = input_kwargs.pop("top_p", None) | |
top_k: Optional[float] = input_kwargs.pop("top_k", None) | |
num_return_sequences: int = input_kwargs.pop("num_return_sequences", 1) | |
repetition_penalty: Optional[float] = input_kwargs.pop("repetition_penalty", None) | |
length_penalty: Optional[float] = input_kwargs.pop("length_penalty", None) | |
max_length: Optional[int] = input_kwargs.pop("max_length", None) | |
max_new_tokens: Optional[int] = input_kwargs.pop("max_new_tokens", None) | |
stop: Optional[Union[str, List[str]]] = input_kwargs.pop("stop", None) | |
if "max_new_tokens" in self.generating_args: | |
max_tokens = self.generating_args["max_new_tokens"] | |
elif "max_length" in self.generating_args: | |
if self.generating_args["max_length"] > prompt_length: | |
max_tokens = self.generating_args["max_length"] - prompt_length | |
else: | |
max_tokens = 1 | |
if max_length: | |
max_tokens = max_length - prompt_length if max_length > prompt_length else 1 | |
if max_new_tokens: | |
max_tokens = max_new_tokens | |
sampling_params = SamplingParams( | |
n=num_return_sequences, | |
repetition_penalty=( | |
repetition_penalty if repetition_penalty is not None else self.generating_args["repetition_penalty"] | |
) | |
or 1.0, # repetition_penalty must > 0 | |
temperature=temperature if temperature is not None else self.generating_args["temperature"], | |
top_p=(top_p if top_p is not None else self.generating_args["top_p"]) or 1.0, # top_p must > 0 | |
top_k=top_k if top_k is not None else self.generating_args["top_k"], | |
use_beam_search=use_beam_search, | |
length_penalty=length_penalty if length_penalty is not None else self.generating_args["length_penalty"], | |
stop=stop, | |
stop_token_ids=[self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids, | |
max_tokens=max_tokens, | |
skip_special_tokens=True, | |
) | |
result_generator = self.model.generate( | |
inputs={"prompt_token_ids": prompt_ids, "multi_modal_data": multi_modal_data}, | |
sampling_params=sampling_params, | |
request_id=request_id, | |
lora_request=self.lora_request, | |
) | |
return result_generator | |
async def chat( | |
self, | |
messages: Sequence[Dict[str, str]], | |
system: Optional[str] = None, | |
tools: Optional[str] = None, | |
image: Optional["NDArray"] = None, | |
**input_kwargs, | |
) -> List["Response"]: | |
final_output = None | |
generator = await self._generate(messages, system, tools, image, **input_kwargs) | |
async for request_output in generator: | |
final_output = request_output | |
results = [] | |
for output in final_output.outputs: | |
results.append( | |
Response( | |
response_text=output.text, | |
response_length=len(output.token_ids), | |
prompt_length=len(final_output.prompt_token_ids), | |
finish_reason=output.finish_reason, | |
) | |
) | |
return results | |
async def stream_chat( | |
self, | |
messages: Sequence[Dict[str, str]], | |
system: Optional[str] = None, | |
tools: Optional[str] = None, | |
image: Optional["NDArray"] = None, | |
**input_kwargs, | |
) -> AsyncGenerator[str, None]: | |
generated_text = "" | |
generator = await self._generate(messages, system, tools, image, **input_kwargs) | |
async for result in generator: | |
delta_text = result.outputs[0].text[len(generated_text) :] | |
generated_text = result.outputs[0].text | |
yield delta_text | |
async def get_scores( | |
self, | |
batch_input: List[str], | |
**input_kwargs, | |
) -> List[float]: | |
raise NotImplementedError("vLLM engine does not support get_scores.") | |