Spaces:
Configuration error
Configuration error
Update README.md
Browse files
README.md
CHANGED
@@ -1,52 +1,9 @@
|
|
1 |
-
|
2 |
|
3 |
-
|
4 |
|
5 |
-
|
6 |
-
- Deploy within Flask app with jinja2 template
|
7 |
-
- Serve only the Flask prediction API. The used html and javascript files can be included in any Frontend application (with only a slight modification) and can run completely separate from the Flask App then.
|
8 |
|
9 |
-
|
10 |
-
This repo currently contains the starter files.
|
11 |
|
12 |
-
|
13 |
-
```
|
14 |
-
$ git clone https://github.com/python-engineer/chatbot-deployment.git
|
15 |
-
$ cd chatbot-deployment
|
16 |
-
$ python3 -m venv venv
|
17 |
-
$ . venv/bin/activate
|
18 |
-
```
|
19 |
-
Install dependencies
|
20 |
-
```
|
21 |
-
$ (venv) pip install Flask torch torchvision nltk
|
22 |
-
```
|
23 |
-
Install nltk package
|
24 |
-
```
|
25 |
-
$ (venv) python
|
26 |
-
>>> import nltk
|
27 |
-
>>> nltk.download('punkt')
|
28 |
-
```
|
29 |
-
Modify `intents.json` with different intents and responses for your Chatbot
|
30 |
-
|
31 |
-
Run
|
32 |
-
```
|
33 |
-
$ (venv) python train.py
|
34 |
-
```
|
35 |
-
This will dump data.pth file. And then run
|
36 |
-
the following command to test it in the console.
|
37 |
-
```
|
38 |
-
$ (venv) python chat.py
|
39 |
-
```
|
40 |
-
|
41 |
-
Now for deployment follow my tutorial to implement `app.py` and `app.js`.
|
42 |
-
|
43 |
-
## Watch the Tutorial
|
44 |
-
[](https://youtu.be/a37BL0stIuM)
|
45 |
-
[https://youtu.be/a37BL0stIuM](https://youtu.be/a37BL0stIuM)
|
46 |
-
|
47 |
-
## Note
|
48 |
-
In the video we implement the first approach using jinja2 templates within our Flask app. Only slight modifications are needed to run the frontend separately. I put the final frontend code for a standalone frontend application in the [standalone-frontend](/standalone-frontend) folder.
|
49 |
-
|
50 |
-
## Credits:
|
51 |
-
This repo was used for the frontend code:
|
52 |
-
https://github.com/hitchcliff/front-end-chatjs
|
|
|
1 |
+
1. Create a virtual environment using python -m venv venv
|
2 |
|
3 |
+
2. Go to the venv using the command venv\Scripts\activate
|
4 |
|
5 |
+
3. Install the required packages
|
|
|
|
|
6 |
|
7 |
+
4. Train the model using python train.py
|
|
|
8 |
|
9 |
+
5. Use python app.py to check in localhost
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|