Spaces:
Runtime error
Runtime error
import os | |
import torch | |
import gradio as gr | |
import logging | |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM | |
from utils.log_manager import LogManager | |
from utils.analytics_logger import AnalyticsLogger | |
from agents.orchestrator import WellnessOrchestrator | |
# Force CPU-only mode | |
torch.cuda.is_available = lambda: False | |
if hasattr(torch, 'set_default_tensor_type'): | |
torch.set_default_tensor_type('torch.FloatTensor') | |
class WellnessInterface: | |
def __init__(self, config): | |
self.config = config | |
self.log_manager = LogManager() | |
self.logger = self.log_manager.get_agent_logger("interface") | |
self.analytics = AnalyticsLogger() | |
# Ensure CPU-only operation | |
self.device = "cpu" | |
self.logger.info("Using CPU-only mode") | |
# Initialize models | |
self.initialize_models() | |
# Initialize orchestrator | |
self.initialize_orchestrator() | |
# Initialize interface | |
self.setup_interface() | |
def initialize_models(self): | |
"""Initialize AI models""" | |
self.logger.info("Initializing AI models") | |
try: | |
# Initialize emotion detection model | |
self.emotion_model = pipeline( | |
"text-classification", | |
model=self.config["MODEL_CONFIGS"]["emotion_detection"]["model_id"], | |
device=self.device | |
) | |
# Initialize conversation model | |
self.conversation_tokenizer = AutoTokenizer.from_pretrained( | |
self.config["MODEL_CONFIGS"]["conversation"]["model_id"] | |
) | |
self.conversation_model = AutoModelForCausalLM.from_pretrained( | |
self.config["MODEL_CONFIGS"]["conversation"]["model_id"], | |
device_map={"": self.device} | |
) | |
self.logger.info("AI models initialized successfully") | |
except Exception as e: | |
self.logger.error(f"Error initializing models: {str(e)}") | |
raise | |
def initialize_orchestrator(self): | |
"""Initialize CrewAI orchestrator""" | |
self.logger.info("Initializing CrewAI orchestrator") | |
try: | |
self.orchestrator = WellnessOrchestrator( | |
model_config=self.config["MODEL_CONFIGS"] | |
) | |
self.logger.info("Orchestrator initialized successfully") | |
except Exception as e: | |
self.logger.error(f"Error initializing orchestrator: {str(e)}") | |
raise | |
def setup_interface(self): | |
"""Setup the Gradio interface components""" | |
self.logger.info("Setting up interface components") | |
try: | |
with gr.Blocks( | |
theme=gr.themes.Soft(), | |
css=".gradio-container {background-color: #f7f7f7}" | |
) as self.interface: | |
gr.Markdown( | |
"# π§ Mental Wellness Support", | |
elem_classes="text-center" | |
) | |
gr.Markdown( | |
"A safe space for mental health support and guidance.", | |
elem_classes="text-center" | |
) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
self.chatbot = gr.Chatbot( | |
label="Mental Wellness Assistant", | |
height=400, | |
value=[], | |
type="messages", | |
elem_id="wellness_chat", | |
avatar_images=["π€", "π€"] | |
) | |
with gr.Row(): | |
self.text_input = gr.Textbox( | |
label="Type your message", | |
placeholder="Enter your message here...", | |
lines=2, | |
scale=4, | |
container=False | |
) | |
self.submit_btn = gr.Button( | |
"Send", | |
scale=1, | |
variant="primary" | |
) | |
with gr.Row(): | |
self.audio_input = gr.Audio( | |
label="Voice Input", | |
type="filepath", | |
format="wav", | |
scale=1 | |
) | |
self.image_input = gr.Image( | |
label="Image Upload", | |
type="filepath", | |
scale=1 | |
) | |
with gr.Column(scale=1): | |
with gr.Group(): | |
gr.Markdown("### Quick Actions") | |
self.clear_btn = gr.Button( | |
"ποΈ Clear Chat", | |
variant="secondary" | |
) | |
self.emergency_btn = gr.Button( | |
"π¨ Emergency Help", | |
variant="stop" | |
) | |
gr.Markdown("### Resources") | |
gr.Markdown(""" | |
- π Crisis Hotline: 988 | |
- π Text HOME to 741741 | |
- π₯ Emergency: 911 | |
""") | |
# Event handlers | |
self.submit_btn.click( | |
fn=self.process_input, | |
inputs=[ | |
self.text_input, | |
self.audio_input, | |
self.image_input, | |
self.chatbot | |
], | |
outputs=[ | |
self.chatbot, | |
self.text_input | |
], | |
api_name="chat" | |
) | |
self.clear_btn.click( | |
fn=self.clear_chat, | |
inputs=[], | |
outputs=[self.chatbot], | |
api_name="clear" | |
) | |
self.emergency_btn.click( | |
fn=self.emergency_help, | |
inputs=[], | |
outputs=[self.chatbot], | |
api_name="emergency" | |
) | |
# Add keyboard shortcuts | |
self.text_input.submit( | |
fn=self.process_input, | |
inputs=[ | |
self.text_input, | |
self.audio_input, | |
self.image_input, | |
self.chatbot | |
], | |
outputs=[ | |
self.chatbot, | |
self.text_input | |
] | |
) | |
self.logger.info("Interface setup completed successfully") | |
except Exception as e: | |
self.logger.error(f"Error setting up interface: {str(e)}") | |
raise | |
def process_input(self, text, audio, image, history): | |
"""Process user input from various sources""" | |
try: | |
if not text and not audio and not image: | |
return history, "" | |
# Log the interaction start | |
self.analytics.log_user_interaction( | |
user_id="anonymous", | |
interaction_type="message", | |
agent_type="interface", | |
duration=0, | |
success=True, | |
details={"input_types": { | |
"text": bool(text), | |
"audio": bool(audio), | |
"image": bool(image) | |
}} | |
) | |
# Process through orchestrator | |
context = { | |
"history": history, | |
"emotion": self.emotion_model(text)[0] if text else None, | |
"has_audio": bool(audio), | |
"has_image": bool(image) | |
} | |
response = self.orchestrator.process_message( | |
message=text if text else "Sent media", | |
context=context | |
) | |
# Add to chat history using message format | |
history = history or [] | |
history.append({"role": "user", "content": text if text else "Sent media"}) | |
history.append({ | |
"role": "assistant", | |
"content": response["message"], | |
"metadata": { | |
"agent": response["agent_type"], | |
"task": response["task_type"] | |
} | |
}) | |
return history, "" # Return empty string to clear text input | |
except Exception as e: | |
self.logger.error(f"Error processing input: {str(e)}") | |
history = history or [] | |
history.append({ | |
"role": "assistant", | |
"content": "I apologize, but I encountered an error. Please try again." | |
}) | |
return history, text # Keep text input in case of error | |
def clear_chat(self): | |
"""Clear the chat history""" | |
self.logger.info("Clearing chat history") | |
return None | |
def emergency_help(self): | |
"""Provide emergency help information""" | |
self.logger.info("Emergency help requested") | |
# Use crisis agent through orchestrator | |
response = self.orchestrator.process_message( | |
message="EMERGENCY_HELP_REQUESTED", | |
context={"is_emergency": True} | |
) | |
return [{ | |
"role": "assistant", | |
"content": response["message"], | |
"metadata": { | |
"agent": response["agent_type"], | |
"task": response["task_type"] | |
} | |
}] | |
def launch(self, **kwargs): | |
"""Launch the interface""" | |
self.logger.info("Launching interface") | |
# Configure for Hugging Face Spaces | |
kwargs.update({ | |
"show_api": False, | |
"show_error": True, | |
"quiet": True | |
}) | |
self.interface.launch(**kwargs) |