Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -132,140 +132,5 @@ def main():
|
|
132 |
top_violations = get_top_violations(df, selected_age)
|
133 |
st.table(top_violations)
|
134 |
|
135 |
-
if __name__ == "__main__":
|
136 |
-
main()import streamlit as st
|
137 |
-
import pandas as pd
|
138 |
-
import plotly.express as px
|
139 |
-
|
140 |
-
def load_and_preprocess_data(file_path):
|
141 |
-
# Read the data
|
142 |
-
df = pd.read_csv(file_path)
|
143 |
-
|
144 |
-
# Basic preprocessing
|
145 |
-
df = df.drop(['X', 'Y'], axis=1)
|
146 |
-
df.dropna(subset=['Incidentid', 'DateTime', 'Year', 'Latitude', 'Longitude'], inplace=True)
|
147 |
-
|
148 |
-
# Fill missing values
|
149 |
-
numeric = ['Age_Drv1', 'Age_Drv2']
|
150 |
-
for col in numeric:
|
151 |
-
df[col].fillna(df[col].median(), inplace=True)
|
152 |
-
|
153 |
-
categorical = ['Gender_Drv1', 'Violation1_Drv1', 'AlcoholUse_Drv1', 'DrugUse_Drv1',
|
154 |
-
'Gender_Drv2', 'Violation1_Drv2', 'AlcoholUse_Drv2', 'DrugUse_Drv2',
|
155 |
-
'Unittype_Two', 'Traveldirection_Two', 'Unitaction_Two', 'CrossStreet']
|
156 |
-
for col in categorical:
|
157 |
-
df[col].fillna('Unknown', inplace=True)
|
158 |
-
|
159 |
-
# Remove invalid ages
|
160 |
-
df = df[
|
161 |
-
(df['Age_Drv1'] <= 90) &
|
162 |
-
(df['Age_Drv2'] <= 90) &
|
163 |
-
(df['Age_Drv1'] >= 16) &
|
164 |
-
(df['Age_Drv2'] >= 16)
|
165 |
-
]
|
166 |
-
|
167 |
-
# Create age groups
|
168 |
-
bins = [15, 25, 35, 45, 55, 65, 90]
|
169 |
-
labels = ['16-25', '26-35', '36-45', '46-55', '56-65', '65+']
|
170 |
-
|
171 |
-
df['Age_Group_Drv1'] = pd.cut(df['Age_Drv1'], bins=bins, labels=labels)
|
172 |
-
df['Age_Group_Drv2'] = pd.cut(df['Age_Drv2'], bins=bins, labels=labels)
|
173 |
-
|
174 |
-
return df
|
175 |
-
|
176 |
-
def create_severity_violation_chart(df, age_group=None):
|
177 |
-
# Apply age group filter if selected
|
178 |
-
if age_group != 'All Ages':
|
179 |
-
df = df[(df['Age_Group_Drv1'] == age_group) | (df['Age_Group_Drv2'] == age_group)]
|
180 |
-
|
181 |
-
# Combine violations from both drivers
|
182 |
-
violations_1 = df.groupby(['Violation1_Drv1', 'Injuryseverity']).size().reset_index(name='count')
|
183 |
-
violations_2 = df.groupby(['Violation1_Drv2', 'Injuryseverity']).size().reset_index(name='count')
|
184 |
-
|
185 |
-
violations_1.columns = ['Violation', 'Severity', 'count']
|
186 |
-
violations_2.columns = ['Violation', 'Severity', 'count']
|
187 |
-
|
188 |
-
violations = pd.concat([violations_1, violations_2])
|
189 |
-
violations = violations.groupby(['Violation', 'Severity'])['count'].sum().reset_index()
|
190 |
-
|
191 |
-
# Create visualization
|
192 |
-
fig = px.bar(
|
193 |
-
violations,
|
194 |
-
x='Violation',
|
195 |
-
y='count',
|
196 |
-
color='Severity',
|
197 |
-
title=f'Crash Severity Distribution by Violation Type - {age_group}',
|
198 |
-
labels={'count': 'Number of Incidents', 'Violation': 'Violation Type'},
|
199 |
-
height=600
|
200 |
-
)
|
201 |
-
|
202 |
-
fig.update_layout(
|
203 |
-
xaxis_tickangle=-45,
|
204 |
-
legend_title='Severity Level',
|
205 |
-
barmode='stack'
|
206 |
-
)
|
207 |
-
|
208 |
-
return fig
|
209 |
-
|
210 |
-
def get_top_violations(df, age_group):
|
211 |
-
if age_group == 'All Ages':
|
212 |
-
violations = pd.concat([
|
213 |
-
df['Violation1_Drv1'].value_counts(),
|
214 |
-
df['Violation1_Drv2'].value_counts()
|
215 |
-
]).groupby(level=0).sum()
|
216 |
-
else:
|
217 |
-
filtered_df = df[
|
218 |
-
(df['Age_Group_Drv1'] == age_group) |
|
219 |
-
(df['Age_Group_Drv2'] == age_group)
|
220 |
-
]
|
221 |
-
violations = pd.concat([
|
222 |
-
filtered_df['Violation1_Drv1'].value_counts(),
|
223 |
-
filtered_df['Violation1_Drv2'].value_counts()
|
224 |
-
]).groupby(level=0).sum()
|
225 |
-
|
226 |
-
# Convert to DataFrame and format
|
227 |
-
violations_df = violations.reset_index()
|
228 |
-
violations_df.columns = ['Violation Type', 'Count']
|
229 |
-
violations_df['Percentage'] = (violations_df['Count'] / violations_df['Count'].sum() * 100).round(2)
|
230 |
-
violations_df['Percentage'] = violations_df['Percentage'].map('{:.2f}%'.format)
|
231 |
-
|
232 |
-
return violations_df.head()
|
233 |
-
|
234 |
-
def main():
|
235 |
-
st.title('Traffic Crash Analysis')
|
236 |
-
|
237 |
-
# Load data
|
238 |
-
df = load_and_preprocess_data('1.08_Crash_Data_Report_(detail).csv')
|
239 |
-
|
240 |
-
# Create simple dropdown for age groups
|
241 |
-
age_groups = ['All Ages', '16-25', '26-35', '36-45', '46-55', '56-65', '65+']
|
242 |
-
selected_age = st.selectbox('Select Age Group:', age_groups)
|
243 |
-
|
244 |
-
# Create and display chart
|
245 |
-
fig = create_severity_violation_chart(df, selected_age)
|
246 |
-
st.plotly_chart(fig, use_container_width=True)
|
247 |
-
|
248 |
-
# Display statistics
|
249 |
-
if selected_age == 'All Ages':
|
250 |
-
total_incidents = len(df)
|
251 |
-
else:
|
252 |
-
total_incidents = len(df[
|
253 |
-
(df['Age_Group_Drv1'] == selected_age) |
|
254 |
-
(df['Age_Group_Drv2'] == selected_age)
|
255 |
-
])
|
256 |
-
|
257 |
-
# Create two columns for statistics
|
258 |
-
col1, col2 = st.columns(2)
|
259 |
-
|
260 |
-
with col1:
|
261 |
-
st.markdown(f"### Total Incidents")
|
262 |
-
st.markdown(f"**{total_incidents:,}** incidents for {selected_age}")
|
263 |
-
|
264 |
-
# Display top violations table
|
265 |
-
with col2:
|
266 |
-
st.markdown("### Top Violations")
|
267 |
-
top_violations = get_top_violations(df, selected_age)
|
268 |
-
st.table(top_violations)
|
269 |
-
|
270 |
if __name__ == "__main__":
|
271 |
main()
|
|
|
132 |
top_violations = get_top_violations(df, selected_age)
|
133 |
st.table(top_violations)
|
134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
if __name__ == "__main__":
|
136 |
main()
|