Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -72,6 +72,30 @@ def create_severity_violation_chart(df, age_group=None):
|
|
72 |
|
73 |
return fig
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
def main():
|
76 |
st.title('Traffic Crash Analysis')
|
77 |
|
@@ -86,7 +110,7 @@ def main():
|
|
86 |
fig = create_severity_violation_chart(df, selected_age)
|
87 |
st.plotly_chart(fig, use_container_width=True)
|
88 |
|
89 |
-
# Display
|
90 |
if selected_age == 'All Ages':
|
91 |
total_incidents = len(df)
|
92 |
else:
|
@@ -95,7 +119,153 @@ def main():
|
|
95 |
(df['Age_Group_Drv2'] == selected_age)
|
96 |
])
|
97 |
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
if __name__ == "__main__":
|
101 |
main()
|
|
|
72 |
|
73 |
return fig
|
74 |
|
75 |
+
def get_top_violations(df, age_group):
|
76 |
+
if age_group == 'All Ages':
|
77 |
+
violations = pd.concat([
|
78 |
+
df['Violation1_Drv1'].value_counts(),
|
79 |
+
df['Violation1_Drv2'].value_counts()
|
80 |
+
]).groupby(level=0).sum()
|
81 |
+
else:
|
82 |
+
filtered_df = df[
|
83 |
+
(df['Age_Group_Drv1'] == age_group) |
|
84 |
+
(df['Age_Group_Drv2'] == age_group)
|
85 |
+
]
|
86 |
+
violations = pd.concat([
|
87 |
+
filtered_df['Violation1_Drv1'].value_counts(),
|
88 |
+
filtered_df['Violation1_Drv2'].value_counts()
|
89 |
+
]).groupby(level=0).sum()
|
90 |
+
|
91 |
+
# Convert to DataFrame and format
|
92 |
+
violations_df = violations.reset_index()
|
93 |
+
violations_df.columns = ['Violation Type', 'Count']
|
94 |
+
violations_df['Percentage'] = (violations_df['Count'] / violations_df['Count'].sum() * 100).round(2)
|
95 |
+
violations_df['Percentage'] = violations_df['Percentage'].map('{:.2f}%'.format)
|
96 |
+
|
97 |
+
return violations_df.head()
|
98 |
+
|
99 |
def main():
|
100 |
st.title('Traffic Crash Analysis')
|
101 |
|
|
|
110 |
fig = create_severity_violation_chart(df, selected_age)
|
111 |
st.plotly_chart(fig, use_container_width=True)
|
112 |
|
113 |
+
# Display statistics
|
114 |
if selected_age == 'All Ages':
|
115 |
total_incidents = len(df)
|
116 |
else:
|
|
|
119 |
(df['Age_Group_Drv2'] == selected_age)
|
120 |
])
|
121 |
|
122 |
+
# Create two columns for statistics
|
123 |
+
col1, col2 = st.columns(2)
|
124 |
+
|
125 |
+
with col1:
|
126 |
+
st.markdown(f"### Total Incidents")
|
127 |
+
st.markdown(f"**{total_incidents:,}** incidents for {selected_age}")
|
128 |
+
|
129 |
+
# Display top violations table
|
130 |
+
with col2:
|
131 |
+
st.markdown("### Top Violations")
|
132 |
+
top_violations = get_top_violations(df, selected_age)
|
133 |
+
st.table(top_violations)
|
134 |
+
|
135 |
+
if __name__ == "__main__":
|
136 |
+
main()import streamlit as st
|
137 |
+
import pandas as pd
|
138 |
+
import plotly.express as px
|
139 |
+
|
140 |
+
def load_and_preprocess_data(file_path):
|
141 |
+
# Read the data
|
142 |
+
df = pd.read_csv(file_path)
|
143 |
+
|
144 |
+
# Basic preprocessing
|
145 |
+
df = df.drop(['X', 'Y'], axis=1)
|
146 |
+
df.dropna(subset=['Incidentid', 'DateTime', 'Year', 'Latitude', 'Longitude'], inplace=True)
|
147 |
+
|
148 |
+
# Fill missing values
|
149 |
+
numeric = ['Age_Drv1', 'Age_Drv2']
|
150 |
+
for col in numeric:
|
151 |
+
df[col].fillna(df[col].median(), inplace=True)
|
152 |
+
|
153 |
+
categorical = ['Gender_Drv1', 'Violation1_Drv1', 'AlcoholUse_Drv1', 'DrugUse_Drv1',
|
154 |
+
'Gender_Drv2', 'Violation1_Drv2', 'AlcoholUse_Drv2', 'DrugUse_Drv2',
|
155 |
+
'Unittype_Two', 'Traveldirection_Two', 'Unitaction_Two', 'CrossStreet']
|
156 |
+
for col in categorical:
|
157 |
+
df[col].fillna('Unknown', inplace=True)
|
158 |
+
|
159 |
+
# Remove invalid ages
|
160 |
+
df = df[
|
161 |
+
(df['Age_Drv1'] <= 90) &
|
162 |
+
(df['Age_Drv2'] <= 90) &
|
163 |
+
(df['Age_Drv1'] >= 16) &
|
164 |
+
(df['Age_Drv2'] >= 16)
|
165 |
+
]
|
166 |
+
|
167 |
+
# Create age groups
|
168 |
+
bins = [15, 25, 35, 45, 55, 65, 90]
|
169 |
+
labels = ['16-25', '26-35', '36-45', '46-55', '56-65', '65+']
|
170 |
+
|
171 |
+
df['Age_Group_Drv1'] = pd.cut(df['Age_Drv1'], bins=bins, labels=labels)
|
172 |
+
df['Age_Group_Drv2'] = pd.cut(df['Age_Drv2'], bins=bins, labels=labels)
|
173 |
+
|
174 |
+
return df
|
175 |
+
|
176 |
+
def create_severity_violation_chart(df, age_group=None):
|
177 |
+
# Apply age group filter if selected
|
178 |
+
if age_group != 'All Ages':
|
179 |
+
df = df[(df['Age_Group_Drv1'] == age_group) | (df['Age_Group_Drv2'] == age_group)]
|
180 |
+
|
181 |
+
# Combine violations from both drivers
|
182 |
+
violations_1 = df.groupby(['Violation1_Drv1', 'Injuryseverity']).size().reset_index(name='count')
|
183 |
+
violations_2 = df.groupby(['Violation1_Drv2', 'Injuryseverity']).size().reset_index(name='count')
|
184 |
+
|
185 |
+
violations_1.columns = ['Violation', 'Severity', 'count']
|
186 |
+
violations_2.columns = ['Violation', 'Severity', 'count']
|
187 |
+
|
188 |
+
violations = pd.concat([violations_1, violations_2])
|
189 |
+
violations = violations.groupby(['Violation', 'Severity'])['count'].sum().reset_index()
|
190 |
+
|
191 |
+
# Create visualization
|
192 |
+
fig = px.bar(
|
193 |
+
violations,
|
194 |
+
x='Violation',
|
195 |
+
y='count',
|
196 |
+
color='Severity',
|
197 |
+
title=f'Crash Severity Distribution by Violation Type - {age_group}',
|
198 |
+
labels={'count': 'Number of Incidents', 'Violation': 'Violation Type'},
|
199 |
+
height=600
|
200 |
+
)
|
201 |
+
|
202 |
+
fig.update_layout(
|
203 |
+
xaxis_tickangle=-45,
|
204 |
+
legend_title='Severity Level',
|
205 |
+
barmode='stack'
|
206 |
+
)
|
207 |
+
|
208 |
+
return fig
|
209 |
+
|
210 |
+
def get_top_violations(df, age_group):
|
211 |
+
if age_group == 'All Ages':
|
212 |
+
violations = pd.concat([
|
213 |
+
df['Violation1_Drv1'].value_counts(),
|
214 |
+
df['Violation1_Drv2'].value_counts()
|
215 |
+
]).groupby(level=0).sum()
|
216 |
+
else:
|
217 |
+
filtered_df = df[
|
218 |
+
(df['Age_Group_Drv1'] == age_group) |
|
219 |
+
(df['Age_Group_Drv2'] == age_group)
|
220 |
+
]
|
221 |
+
violations = pd.concat([
|
222 |
+
filtered_df['Violation1_Drv1'].value_counts(),
|
223 |
+
filtered_df['Violation1_Drv2'].value_counts()
|
224 |
+
]).groupby(level=0).sum()
|
225 |
+
|
226 |
+
# Convert to DataFrame and format
|
227 |
+
violations_df = violations.reset_index()
|
228 |
+
violations_df.columns = ['Violation Type', 'Count']
|
229 |
+
violations_df['Percentage'] = (violations_df['Count'] / violations_df['Count'].sum() * 100).round(2)
|
230 |
+
violations_df['Percentage'] = violations_df['Percentage'].map('{:.2f}%'.format)
|
231 |
+
|
232 |
+
return violations_df.head()
|
233 |
+
|
234 |
+
def main():
|
235 |
+
st.title('Traffic Crash Analysis')
|
236 |
+
|
237 |
+
# Load data
|
238 |
+
df = load_and_preprocess_data('1.08_Crash_Data_Report_(detail).csv')
|
239 |
+
|
240 |
+
# Create simple dropdown for age groups
|
241 |
+
age_groups = ['All Ages', '16-25', '26-35', '36-45', '46-55', '56-65', '65+']
|
242 |
+
selected_age = st.selectbox('Select Age Group:', age_groups)
|
243 |
+
|
244 |
+
# Create and display chart
|
245 |
+
fig = create_severity_violation_chart(df, selected_age)
|
246 |
+
st.plotly_chart(fig, use_container_width=True)
|
247 |
+
|
248 |
+
# Display statistics
|
249 |
+
if selected_age == 'All Ages':
|
250 |
+
total_incidents = len(df)
|
251 |
+
else:
|
252 |
+
total_incidents = len(df[
|
253 |
+
(df['Age_Group_Drv1'] == selected_age) |
|
254 |
+
(df['Age_Group_Drv2'] == selected_age)
|
255 |
+
])
|
256 |
+
|
257 |
+
# Create two columns for statistics
|
258 |
+
col1, col2 = st.columns(2)
|
259 |
+
|
260 |
+
with col1:
|
261 |
+
st.markdown(f"### Total Incidents")
|
262 |
+
st.markdown(f"**{total_incidents:,}** incidents for {selected_age}")
|
263 |
+
|
264 |
+
# Display top violations table
|
265 |
+
with col2:
|
266 |
+
st.markdown("### Top Violations")
|
267 |
+
top_violations = get_top_violations(df, selected_age)
|
268 |
+
st.table(top_violations)
|
269 |
|
270 |
if __name__ == "__main__":
|
271 |
main()
|