Spaces:
Sleeping
Sleeping
File size: 16,346 Bytes
b940652 d29859a 2a9b164 b940652 2a9b164 efe30e8 ee5e9c0 efe30e8 2a9b164 d923522 2a9b164 5bfb630 d29859a 5bfb630 d29859a a89028e 2f2ec5c efe30e8 2b3866a 270f8fe efe30e8 2a9b164 a2a8c23 efe30e8 2a9b164 734e6ce 2b3866a d29859a 966a139 fa6d354 a2a8c23 5bfb630 b940652 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
import streamlit as st
import pandas as pd
import plotly.express as px
import altair as alt
import folium
from folium.plugins import HeatMap, MarkerCluster
from streamlit_folium import st_folium
@st.cache_data
def load_and_preprocess_data(file_path):
# Read the data
df = pd.read_csv(file_path)
# Basic preprocessing
df = df.drop(['X', 'Y'], axis=1)
df.dropna(subset=['Incidentid', 'DateTime', 'Year', 'Latitude', 'Longitude'], inplace=True)
# Convert Year to int
df['Year'] = df['Year'].astype(int)
# Fill missing values
numeric = ['Age_Drv1', 'Age_Drv2']
for col in numeric:
df[col].fillna(df[col].median(), inplace=True)
categorical = ['Gender_Drv1', 'Violation1_Drv1', 'AlcoholUse_Drv1', 'DrugUse_Drv1',
'Gender_Drv2', 'Violation1_Drv2', 'AlcoholUse_Drv2', 'DrugUse_Drv2',
'Unittype_Two', 'Traveldirection_Two', 'Unitaction_Two', 'CrossStreet']
for col in categorical:
df[col].fillna('Unknown', inplace=True)
# Remove invalid ages
df = df[
(df['Age_Drv1'] <= 90) &
(df['Age_Drv2'] <= 90) &
(df['Age_Drv1'] >= 16) &
(df['Age_Drv2'] >= 16)
]
# Create age groups
bins = [15, 25, 35, 45, 55, 65, 90]
labels = ['16-25', '26-35', '36-45', '46-55', '56-65', '65+']
df['Age_Group_Drv1'] = pd.cut(df['Age_Drv1'], bins=bins, labels=labels)
df['Age_Group_Drv2'] = pd.cut(df['Age_Drv2'], bins=bins, labels=labels)
return df
def create_severity_violation_chart(df, age_group=None):
# Apply age group filter if selected
if age_group != 'All Ages':
df = df[(df['Age_Group_Drv1'] == age_group) | (df['Age_Group_Drv2'] == age_group)]
# Combine violations from both drivers
violations_1 = df.groupby(['Violation1_Drv1', 'Injuryseverity']).size().reset_index(name='count')
violations_2 = df.groupby(['Violation1_Drv2', 'Injuryseverity']).size().reset_index(name='count')
violations_1.columns = ['Violation', 'Severity', 'count']
violations_2.columns = ['Violation', 'Severity', 'count']
violations = pd.concat([violations_1, violations_2])
violations = violations.groupby(['Violation', 'Severity'])['count'].sum().reset_index()
# Create visualization
fig = px.bar(
violations,
x='Violation',
y='count',
color='Severity',
title=f'Crash Severity Distribution by Violation Type - {age_group}',
labels={'count': 'Number of Incidents', 'Violation': 'Violation Type'},
height=600
)
fig.update_layout(
xaxis_tickangle=-45,
legend_title='Severity Level',
barmode='stack'
)
return fig
def get_top_violations(df, age_group):
if age_group == 'All Ages':
violations = pd.concat([
df['Violation1_Drv1'].value_counts(),
df['Violation1_Drv2'].value_counts()
]).groupby(level=0).sum()
else:
filtered_df = df[
(df['Age_Group_Drv1'] == age_group) |
(df['Age_Group_Drv2'] == age_group)
]
violations = pd.concat([
filtered_df['Violation1_Drv1'].value_counts(),
filtered_df['Violation1_Drv2'].value_counts()
]).groupby(level=0).sum()
# Convert to DataFrame and format
violations_df = violations.reset_index()
violations_df.columns = ['Violation Type', 'Count']
violations_df['Percentage'] = (violations_df['Count'] / violations_df['Count'].sum() * 100).round(2)
violations_df['Percentage'] = violations_df['Percentage'].map('{:.2f}%'.format)
return violations_df.head()
@st.cache_data
def create_map(df, selected_year):
filtered_df = df[df['Year'] == selected_year]
m = folium.Map(
location=[33.4255, -111.9400],
zoom_start=12,
control_scale=True,
tiles='CartoDB positron'
)
marker_cluster = MarkerCluster().add_to(m)
for _, row in filtered_df.iterrows():
folium.Marker(
location=[row['Latitude'], row['Longitude']],
popup=f"Accident at {row['Longitude']}, {row['Latitude']}<br>Date: {row['DateTime']}<br>Severity: {row['Injuryseverity']}",
icon=folium.Icon(color='red')
).add_to(marker_cluster)
heat_data = filtered_df[['Latitude', 'Longitude']].values.tolist()
HeatMap(heat_data, radius=15, max_zoom=13, min_opacity=0.3).add_to(m)
return m
def create_injuries_fatalities_chart(crash_data, unit_type):
# 5th visualization title
st.header("5. Total Injuries and Fatalities by Month")
# Filter rows where we have valid data for all necessary columns
crash_data = crash_data[['DateTime', 'Totalinjuries', 'Totalfatalities', 'Unittype_One', 'Unittype_Two']].dropna()
# Convert "DateTime" to datetime type
crash_data['DateTime'] = pd.to_datetime(crash_data['DateTime'], errors='coerce')
crash_data['Month'] = crash_data['DateTime'].dt.month_name()
# sort months in order
month_order = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December']
crash_data['Month'] = pd.Categorical(crash_data['Month'], categories=month_order, ordered=True)
# Dropdown for Unit Type selection
# Dropdown for Unit Type selection
# st.sidebar.selectbox("Select Unit Type", options=['Total'] + crash_data['Unittype_One'].dropna().unique().tolist()) # previous location of dropdown in sidebar
# unit_type = st.selectbox("Select Unit Type", options=['Total'] + crash_data['Unittype_One'].dropna().unique().tolist())
# unit_type_pairs = set()
# for _, row in crash_data[['Unittype_One', 'Unittype_Two']].dropna().iterrows():
# if row['Unittype_One'] != 'Driverless' or row['Unittype_Two'] != 'Driverless':
# pair = ' vs '.join(sorted([row['Unittype_One'], row['Unittype_Two']]))
# unit_type_pairs.add(pair)
# # unit_type_pairs = list(unit_type_pairs) # modified as below to sort the dropdown options in alphabetical order
# unit_type_pairs = sorted(list(unit_type_pairs))
# unit_type = st.selectbox("Select Unit Type Pair", options=['Total'] + unit_type_pairs)
# Filter data based on the selected unit type
if unit_type == 'Total':
filtered_data = crash_data
else:
unit_one, unit_two = unit_type.split(' vs ')
filtered_data = crash_data[((crash_data['Unittype_One'] == unit_one) & (crash_data['Unittype_Two'] == unit_two)) |
((crash_data['Unittype_One'] == unit_two) & (crash_data['Unittype_Two'] == unit_one))]
# Group data by month and calculate total injuries and fatalities
monthly_sum = filtered_data.groupby('Month').agg({'Totalinjuries': 'sum', 'Totalfatalities': 'sum'}).reset_index()
# Reshape the data for easier plotting
injuries = monthly_sum[['Month', 'Totalinjuries']].rename(columns={'Totalinjuries': 'Value'})
injuries['Measure'] = 'Total Injuries'
fatalities = monthly_sum[['Month', 'Totalfatalities']].rename(columns={'Totalfatalities': 'Value'})
fatalities['Measure'] = 'Total Fatalities'
combined_data = pd.concat([injuries, fatalities])
# Originally tried to use bar chart but switched to line chart for better trend visualization
# alt.Chart(monthly_sum).mark_bar().encode(
# x=alt.X('Month', sort=month_order, title='Month'),
# y=alt.Y('Totalinjuries', title='Total Injuries', axis=alt.Axis(titleColor='blue', labelColor='blue', tickColor='blue')),
# color=alt.value('blue'),
# tooltip=['Month', 'Totalinjuries']
# ).properties(
# title='Total Injuries and Fatalities by Month',
# width=300,
# height=300
# ) + alt.Chart(monthly_sum).mark_bar().encode(
# x=alt.X('Month', sort=month_order, title='Month'),
# y=alt.Y('Totalfatalities', title='Total Fatalities', axis=alt.Axis(titleColor='red', labelColor='red', tickColor='red')),
# color=alt.value('red'),
# tooltip=['Month', 'Totalfatalities']
# )
# Tried to figure out how to plot a legend using altair
# line_chart = alt.Chart(monthly_sum).mark_line(point=True).encode(
# x=alt.X('Month', sort=month_order, title='Month'),
# y=alt.Y('Totalinjuries', title='Total Injuries & Fatalities', axis=alt.Axis(titleColor='black')),
# color=alt.value('blue'),
# tooltip=['Month', 'Totalinjuries']
# ).properties(
# title=f'Total Injuries and Fatalities by Month for Unit Type Pair: {unit_type}',
# width=600,
# height=400
# ) + alt.Chart(monthly_sum).mark_line(point=True).encode(
# x=alt.X('Month', sort=month_order, title='Month'),
# y=alt.Y('Totalfatalities', axis=alt.Axis(titleColor='red')),
# color=alt.value('red'),
# tooltip=['Month', 'Totalfatalities']
# ).configure_legend(
# titleFontSize=14,
# labelFontSize=12,
# titleColor='black',
# labelColor='black'
# )
# Plot line chart
line_chart = alt.Chart(combined_data).mark_line(point=True).encode(
x=alt.X('Month:N', sort=month_order, title='Month'),
y=alt.Y('Value:Q', title='Total Injuries & Fatalities'),
color=alt.Color('Measure:N', title='', scale=alt.Scale(domain=['Total Injuries', 'Total Fatalities'], range=['blue', 'red'])),
tooltip=['Month', 'Measure:N', 'Value:Q']
).properties(
title=f'Total Injuries and Fatalities by Month for Unit Type Pair: {unit_type}',
width=600,
height=400
)
# # Combine the charts (trying to make legend)
# combined_chart = alt.layer(line_chart_injuries, line_chart_fatalities).properties(
# title=f'Total Injuries and Fatalities by Month for Unit Type Pair: {unit_type}',
# width=600,
# height=400
# ).configure_legend(
# titleFontSize=14,
# labelFontSize=12,
# titleColor='black',
# labelColor='black'
# )
return line_chart
def create_crash_trend_chart(df, weather=None):
if weather and weather != 'All Conditions':
df = df[df['Weather'] == weather]
# Group data by year and count unique Incident IDs
trend_data = df.groupby('Year')['Incidentid'].nunique().reset_index()
trend_data.columns = ['Year', 'Crash Count']
# Create line graph
fig = px.line(
trend_data,
x='Year',
y='Crash Count',
title=f'Crash Trend Over Time ({weather})',
labels={'Year': 'Year', 'Crash Count': 'Number of Unique Crashes'},
markers=True,
height=600
)
fig.update_traces(line=dict(width=2), marker=dict(size=8))
fig.update_layout(legend_title_text='Trend')
return fig
def create_category_distribution_chart(df, selected_category, selected_year):
# Filter by selected year
if selected_year != 'All Years':
df = df[df['Year'] == int(selected_year)]
# Group by selected category and Injury Severity
grouped_data = df.groupby([selected_category, 'Injuryseverity']).size().reset_index(name='Count')
# Calculate percentages for each category value
total_counts = grouped_data.groupby(selected_category)['Count'].transform('sum')
grouped_data['Percentage'] = (grouped_data['Count'] / total_counts * 100).round(2)
# Create the stacked bar chart using Plotly
fig = px.bar(
grouped_data,
x=selected_category,
y='Count',
color='Injuryseverity',
text='Percentage',
title=f'Distribution of Incidents by {selected_category} ({selected_year})',
labels={'Count': 'Number of Incidents', selected_category: 'Category'},
height=600,
)
# Customize the chart appearance
fig.update_traces(texttemplate='%{text}%', textposition='inside')
fig.update_layout(
barmode='stack',
xaxis_tickangle=-45,
legend_title='Injury Severity',
margin=dict(t=50, b=100),
)
return fig
def main():
st.title('Traffic Crash Analysis')
# Load data
df = load_and_preprocess_data('1.08_Crash_Data_Report_(detail).csv')
if 'Weather' not in df.columns:
df['Weather'] = 'Unknown'
# Create tabs for different visualizations
tab1, tab2, tab3, tab4, tab5 = st.tabs(["Crash Statistics", "Crash Map", "Crash Trend", "Crash Injuries/Fatalities","Distribution by Category"])
with tab1:
# Age group selection
age_groups = ['All Ages', '16-25', '26-35', '36-45', '46-55', '56-65', '65+']
selected_age = st.selectbox('Select Age Group:', age_groups)
# Create and display chart
fig = create_severity_violation_chart(df, selected_age)
st.plotly_chart(fig, use_container_width=True)
# Display statistics
if selected_age == 'All Ages':
total_incidents = len(df)
else:
total_incidents = len(df[
(df['Age_Group_Drv1'] == selected_age) |
(df['Age_Group_Drv2'] == selected_age)
])
# Create two columns for statistics
col1, col2 = st.columns(2)
with col1:
st.markdown(f"### Total Incidents")
st.markdown(f"**{total_incidents:,}** incidents for {selected_age}")
with col2:
st.markdown("### Top Violations")
top_violations = get_top_violations(df, selected_age)
st.table(top_violations)
with tab2:
# Year selection for map
years = sorted(df['Year'].unique())
selected_year = st.selectbox('Select Year:', years)
# Create and display map
st.markdown("### Crash Location Map")
map_placeholder = st.empty()
with map_placeholder:
m = create_map(df, selected_year)
map_data = st_folium(
m,
width=800,
height=600,
key=f"map_{selected_year}",
returned_objects=["null_drawing"]
)
with tab3:
# Weather condition filter
weather = ['All Conditions'] + sorted(df['Weather'].unique())
selected_weather = st.selectbox('Select Weather Condition:', weather)
# Create and display line graph
st.markdown("### Crash Trend Over Time")
trend_fig = create_crash_trend_chart(df, selected_weather)
st.plotly_chart(trend_fig, use_container_width=True)
with tab4:
# Dropdown for Unit Type selection
unit_type_pairs = set()
for _, row in df[['Unittype_One', 'Unittype_Two']].dropna().iterrows():
if row['Unittype_One'] != 'Driverless' or row['Unittype_Two'] != 'Driverless':
pair = ' vs '.join(sorted([row['Unittype_One'], row['Unittype_Two']]))
unit_type_pairs.add(pair)
unit_type_pairs = sorted(list(unit_type_pairs))
unit_type = st.selectbox("Select Unit Type Pair", options=['Total'] + unit_type_pairs)
# Create 5th Visualization: Injuries and fatalities chart
injuries_fatalities_chart = create_injuries_fatalities_chart(df, unit_type)
st.altair_chart(injuries_fatalities_chart, use_container_width=True)
st.markdown("#### TODO: add write-up for this 5th chart.")
with tab5:
# Dropdown for category selection
categories = [
'Collisionmanner',
'Lightcondition',
'Weather',
'SurfaceCondition',
'AlcoholUse_Drv1',
'Gender_Drv1',
]
selected_category = st.selectbox("Select Category:", categories)
# Dropdown for year selection
years = ['All Years'] + sorted(df['Year'].dropna().unique().astype(int).tolist())
selected_year = st.selectbox("Select Year:", years)
# Generate and display the distribution chart
st.markdown(f"### Distribution of Incidents by {selected_category}")
distribution_chart = create_category_distribution_chart(df, selected_category, selected_year)
st.plotly_chart(distribution_chart, use_container_width=True)
if __name__ == "__main__":
main() |