File size: 16,346 Bytes
b940652
 
 
d29859a
2a9b164
 
 
b940652
2a9b164
efe30e8
 
 
 
 
 
 
ee5e9c0
 
 
 
efe30e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a9b164
 
 
d923522
2a9b164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bfb630
d29859a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bfb630
 
 
 
 
 
 
 
d29859a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a89028e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f2ec5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efe30e8
 
 
 
 
2b3866a
270f8fe
 
efe30e8
2a9b164
a2a8c23
efe30e8
2a9b164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
734e6ce
2b3866a
 
 
 
 
 
 
 
 
d29859a
966a139
fa6d354
 
 
 
 
 
 
 
 
 
 
 
 
a2a8c23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bfb630
b940652
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
import streamlit as st
import pandas as pd
import plotly.express as px
import altair as alt
import folium
from folium.plugins import HeatMap, MarkerCluster
from streamlit_folium import st_folium

@st.cache_data
def load_and_preprocess_data(file_path):
    # Read the data
    df = pd.read_csv(file_path)
    
    # Basic preprocessing
    df = df.drop(['X', 'Y'], axis=1)
    df.dropna(subset=['Incidentid', 'DateTime', 'Year', 'Latitude', 'Longitude'], inplace=True)

    # Convert Year to int 
    df['Year'] = df['Year'].astype(int)

    # Fill missing values
    numeric = ['Age_Drv1', 'Age_Drv2']
    for col in numeric:
        df[col].fillna(df[col].median(), inplace=True)
        
    categorical = ['Gender_Drv1', 'Violation1_Drv1', 'AlcoholUse_Drv1', 'DrugUse_Drv1',
                  'Gender_Drv2', 'Violation1_Drv2', 'AlcoholUse_Drv2', 'DrugUse_Drv2',
                  'Unittype_Two', 'Traveldirection_Two', 'Unitaction_Two', 'CrossStreet']
    for col in categorical:
        df[col].fillna('Unknown', inplace=True)
    
    # Remove invalid ages
    df = df[
        (df['Age_Drv1'] <= 90) & 
        (df['Age_Drv2'] <= 90) & 
        (df['Age_Drv1'] >= 16) & 
        (df['Age_Drv2'] >= 16)
    ]
    
    # Create age groups
    bins = [15, 25, 35, 45, 55, 65, 90]
    labels = ['16-25', '26-35', '36-45', '46-55', '56-65', '65+']
    
    df['Age_Group_Drv1'] = pd.cut(df['Age_Drv1'], bins=bins, labels=labels)
    df['Age_Group_Drv2'] = pd.cut(df['Age_Drv2'], bins=bins, labels=labels)
    
    return df

def create_severity_violation_chart(df, age_group=None):
    # Apply age group filter if selected
    if age_group != 'All Ages':
        df = df[(df['Age_Group_Drv1'] == age_group) | (df['Age_Group_Drv2'] == age_group)]
    
    # Combine violations from both drivers
    violations_1 = df.groupby(['Violation1_Drv1', 'Injuryseverity']).size().reset_index(name='count')
    violations_2 = df.groupby(['Violation1_Drv2', 'Injuryseverity']).size().reset_index(name='count')
    
    violations_1.columns = ['Violation', 'Severity', 'count']
    violations_2.columns = ['Violation', 'Severity', 'count']
    
    violations = pd.concat([violations_1, violations_2])
    violations = violations.groupby(['Violation', 'Severity'])['count'].sum().reset_index()
    
    # Create visualization
    fig = px.bar(
        violations,
        x='Violation',
        y='count',
        color='Severity',
        title=f'Crash Severity Distribution by Violation Type - {age_group}',
        labels={'count': 'Number of Incidents', 'Violation': 'Violation Type'},
        height=600
    )
    
    fig.update_layout(
        xaxis_tickangle=-45,
        legend_title='Severity Level',
        barmode='stack'
    )
    
    return fig

def get_top_violations(df, age_group):
    if age_group == 'All Ages':
        violations = pd.concat([
            df['Violation1_Drv1'].value_counts(),
            df['Violation1_Drv2'].value_counts()
        ]).groupby(level=0).sum()
    else:
        filtered_df = df[
            (df['Age_Group_Drv1'] == age_group) | 
            (df['Age_Group_Drv2'] == age_group)
        ]
        violations = pd.concat([
            filtered_df['Violation1_Drv1'].value_counts(),
            filtered_df['Violation1_Drv2'].value_counts()
        ]).groupby(level=0).sum()
    
    # Convert to DataFrame and format
    violations_df = violations.reset_index()
    violations_df.columns = ['Violation Type', 'Count']
    violations_df['Percentage'] = (violations_df['Count'] / violations_df['Count'].sum() * 100).round(2)
    violations_df['Percentage'] = violations_df['Percentage'].map('{:.2f}%'.format)
    
    return violations_df.head()

@st.cache_data
def create_map(df, selected_year):
    filtered_df = df[df['Year'] == selected_year]
        
    m = folium.Map(
        location=[33.4255, -111.9400],
        zoom_start=12,
        control_scale=True,
        tiles='CartoDB positron'
    )
    
    marker_cluster = MarkerCluster().add_to(m)
        
    for _, row in filtered_df.iterrows():
        folium.Marker(
            location=[row['Latitude'], row['Longitude']],
            popup=f"Accident at {row['Longitude']}, {row['Latitude']}<br>Date: {row['DateTime']}<br>Severity: {row['Injuryseverity']}",
            icon=folium.Icon(color='red')
        ).add_to(marker_cluster)
    
    heat_data = filtered_df[['Latitude', 'Longitude']].values.tolist()
    HeatMap(heat_data, radius=15, max_zoom=13, min_opacity=0.3).add_to(m)
    
    return m

def create_injuries_fatalities_chart(crash_data, unit_type):

    # 5th visualization title
    st.header("5. Total Injuries and Fatalities by Month")
    
    # Filter rows where we have valid data for all necessary columns
    crash_data = crash_data[['DateTime', 'Totalinjuries', 'Totalfatalities', 'Unittype_One', 'Unittype_Two']].dropna()

    # Convert "DateTime" to datetime type
    crash_data['DateTime'] = pd.to_datetime(crash_data['DateTime'], errors='coerce')
    crash_data['Month'] = crash_data['DateTime'].dt.month_name()

    # sort months in order
    month_order = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December']
    crash_data['Month'] = pd.Categorical(crash_data['Month'], categories=month_order, ordered=True)

    # Dropdown for Unit Type selection
    # Dropdown for Unit Type selection
    # st.sidebar.selectbox("Select Unit Type", options=['Total'] + crash_data['Unittype_One'].dropna().unique().tolist())  # previous location of dropdown in sidebar
    # unit_type = st.selectbox("Select Unit Type", options=['Total'] + crash_data['Unittype_One'].dropna().unique().tolist())
    # unit_type_pairs = set()
    # for _, row in crash_data[['Unittype_One', 'Unittype_Two']].dropna().iterrows():
    #     if row['Unittype_One'] != 'Driverless' or row['Unittype_Two'] != 'Driverless':
    #         pair = ' vs '.join(sorted([row['Unittype_One'], row['Unittype_Two']]))
    #         unit_type_pairs.add(pair)
    # # unit_type_pairs = list(unit_type_pairs) # modified as below to sort the dropdown options in alphabetical order
    # unit_type_pairs = sorted(list(unit_type_pairs))
    # unit_type = st.selectbox("Select Unit Type Pair", options=['Total'] + unit_type_pairs)

    # Filter data based on the selected unit type
    if unit_type == 'Total':
        filtered_data = crash_data
    else:
        unit_one, unit_two = unit_type.split(' vs ')
        filtered_data = crash_data[((crash_data['Unittype_One'] == unit_one) & (crash_data['Unittype_Two'] == unit_two)) |
                                   ((crash_data['Unittype_One'] == unit_two) & (crash_data['Unittype_Two'] == unit_one))]

    # Group data by month and calculate total injuries and fatalities
    monthly_sum = filtered_data.groupby('Month').agg({'Totalinjuries': 'sum', 'Totalfatalities': 'sum'}).reset_index()

    # Reshape the data for easier plotting
    injuries = monthly_sum[['Month', 'Totalinjuries']].rename(columns={'Totalinjuries': 'Value'})
    injuries['Measure'] = 'Total Injuries'

    fatalities = monthly_sum[['Month', 'Totalfatalities']].rename(columns={'Totalfatalities': 'Value'})
    fatalities['Measure'] = 'Total Fatalities'

    combined_data = pd.concat([injuries, fatalities])

    # Originally tried to use bar chart but switched to line chart for better trend visualization
    # alt.Chart(monthly_sum).mark_bar().encode(
    #     x=alt.X('Month', sort=month_order, title='Month'),
    #     y=alt.Y('Totalinjuries', title='Total Injuries', axis=alt.Axis(titleColor='blue', labelColor='blue', tickColor='blue')),
    #     color=alt.value('blue'),
    #     tooltip=['Month', 'Totalinjuries']
    # ).properties(
    #     title='Total Injuries and Fatalities by Month',
    #     width=300,
    #     height=300
    # ) + alt.Chart(monthly_sum).mark_bar().encode(
    #     x=alt.X('Month', sort=month_order, title='Month'),
    #     y=alt.Y('Totalfatalities', title='Total Fatalities', axis=alt.Axis(titleColor='red', labelColor='red', tickColor='red')),
    #     color=alt.value('red'),
    #     tooltip=['Month', 'Totalfatalities']
    # )

    # Tried to figure out how to plot a legend using altair
    # line_chart = alt.Chart(monthly_sum).mark_line(point=True).encode(
    #     x=alt.X('Month', sort=month_order, title='Month'),
    #     y=alt.Y('Totalinjuries', title='Total Injuries & Fatalities', axis=alt.Axis(titleColor='black')),
    #     color=alt.value('blue'),
    #     tooltip=['Month', 'Totalinjuries']
    # ).properties(
    #     title=f'Total Injuries and Fatalities by Month for Unit Type Pair: {unit_type}',
    #     width=600,
    #     height=400
    # ) + alt.Chart(monthly_sum).mark_line(point=True).encode(
    #     x=alt.X('Month', sort=month_order, title='Month'),
    #     y=alt.Y('Totalfatalities', axis=alt.Axis(titleColor='red')),
    #     color=alt.value('red'),
    #     tooltip=['Month', 'Totalfatalities']
    # ).configure_legend(
    #     titleFontSize=14,
    #     labelFontSize=12,
    #     titleColor='black',
    #     labelColor='black'
    # )
    
    # Plot line chart
    line_chart = alt.Chart(combined_data).mark_line(point=True).encode(
        x=alt.X('Month:N', sort=month_order, title='Month'),
        y=alt.Y('Value:Q', title='Total Injuries & Fatalities'),
        color=alt.Color('Measure:N', title='', scale=alt.Scale(domain=['Total Injuries', 'Total Fatalities'], range=['blue', 'red'])),
        tooltip=['Month', 'Measure:N', 'Value:Q']
    ).properties(
        title=f'Total Injuries and Fatalities by Month for Unit Type Pair: {unit_type}',
        width=600,
        height=400
    )

    # # Combine the charts (trying to make legend)
    # combined_chart = alt.layer(line_chart_injuries, line_chart_fatalities).properties(
    #     title=f'Total Injuries and Fatalities by Month for Unit Type Pair: {unit_type}',
    #     width=600,
    #     height=400
    # ).configure_legend(
    #     titleFontSize=14,
    #     labelFontSize=12,
    #     titleColor='black',
    #     labelColor='black'
    # )
    
    return line_chart

def create_crash_trend_chart(df, weather=None):
    if weather and weather != 'All Conditions':
        df = df[df['Weather'] == weather]
    
    # Group data by year and count unique Incident IDs
    trend_data = df.groupby('Year')['Incidentid'].nunique().reset_index()
    trend_data.columns = ['Year', 'Crash Count']
    
    # Create line graph
    fig = px.line(
        trend_data,
        x='Year',
        y='Crash Count',
        title=f'Crash Trend Over Time ({weather})',
        labels={'Year': 'Year', 'Crash Count': 'Number of Unique Crashes'},
        markers=True,
        height=600
    )
    
    fig.update_traces(line=dict(width=2), marker=dict(size=8))
    fig.update_layout(legend_title_text='Trend')
    
    return fig

def create_category_distribution_chart(df, selected_category, selected_year):
    # Filter by selected year
    if selected_year != 'All Years':
        df = df[df['Year'] == int(selected_year)]

    # Group by selected category and Injury Severity
    grouped_data = df.groupby([selected_category, 'Injuryseverity']).size().reset_index(name='Count')

    # Calculate percentages for each category value
    total_counts = grouped_data.groupby(selected_category)['Count'].transform('sum')
    grouped_data['Percentage'] = (grouped_data['Count'] / total_counts * 100).round(2)

    # Create the stacked bar chart using Plotly
    fig = px.bar(
        grouped_data,
        x=selected_category,
        y='Count',
        color='Injuryseverity',
        text='Percentage',
        title=f'Distribution of Incidents by {selected_category} ({selected_year})',
        labels={'Count': 'Number of Incidents', selected_category: 'Category'},
        height=600,
    )

    # Customize the chart appearance
    fig.update_traces(texttemplate='%{text}%', textposition='inside')
    fig.update_layout(
        barmode='stack',
        xaxis_tickangle=-45,
        legend_title='Injury Severity',
        margin=dict(t=50, b=100),
    )

    return fig

def main():
    st.title('Traffic Crash Analysis')
    
    # Load data
    df = load_and_preprocess_data('1.08_Crash_Data_Report_(detail).csv')

    if 'Weather' not in df.columns:
        df['Weather'] = 'Unknown'
    
    # Create tabs for different visualizations
    tab1, tab2, tab3, tab4, tab5 = st.tabs(["Crash Statistics", "Crash Map", "Crash Trend", "Crash Injuries/Fatalities","Distribution by Category"])
    
    with tab1:
        # Age group selection
        age_groups = ['All Ages', '16-25', '26-35', '36-45', '46-55', '56-65', '65+']
        selected_age = st.selectbox('Select Age Group:', age_groups)
        
        # Create and display chart
        fig = create_severity_violation_chart(df, selected_age)
        st.plotly_chart(fig, use_container_width=True)
        
        # Display statistics
        if selected_age == 'All Ages':
            total_incidents = len(df)
        else:
            total_incidents = len(df[
                (df['Age_Group_Drv1'] == selected_age) | 
                (df['Age_Group_Drv2'] == selected_age)
            ])
        
        # Create two columns for statistics
        col1, col2 = st.columns(2)
        
        with col1:
            st.markdown(f"### Total Incidents")
            st.markdown(f"**{total_incidents:,}** incidents for {selected_age}")
        
        with col2:
            st.markdown("### Top Violations")
            top_violations = get_top_violations(df, selected_age)
            st.table(top_violations)
    
    with tab2:
        # Year selection for map
        years = sorted(df['Year'].unique())
        selected_year = st.selectbox('Select Year:', years)
        
        # Create and display map
        st.markdown("### Crash Location Map")
        map_placeholder = st.empty()
        with map_placeholder:
            m = create_map(df, selected_year)
            map_data = st_folium(
                m,
                width=800,
                height=600,
                key=f"map_{selected_year}",
                returned_objects=["null_drawing"]
            )
    
    with tab3:
        # Weather condition filter
        weather = ['All Conditions'] + sorted(df['Weather'].unique())
        selected_weather = st.selectbox('Select Weather Condition:', weather)
        
        # Create and display line graph
        st.markdown("### Crash Trend Over Time")
        trend_fig = create_crash_trend_chart(df, selected_weather)
        st.plotly_chart(trend_fig, use_container_width=True)

    with tab4:
        # Dropdown for Unit Type selection
        unit_type_pairs = set()
        for _, row in df[['Unittype_One', 'Unittype_Two']].dropna().iterrows():
            if row['Unittype_One'] != 'Driverless' or row['Unittype_Two'] != 'Driverless':
                pair = ' vs '.join(sorted([row['Unittype_One'], row['Unittype_Two']]))
                unit_type_pairs.add(pair)
        unit_type_pairs = sorted(list(unit_type_pairs))
        unit_type = st.selectbox("Select Unit Type Pair", options=['Total'] + unit_type_pairs)
    
        # Create 5th Visualization: Injuries and fatalities chart
        injuries_fatalities_chart = create_injuries_fatalities_chart(df, unit_type)
        st.altair_chart(injuries_fatalities_chart, use_container_width=True)
        st.markdown("#### TODO: add write-up for this 5th chart.")
        
    with tab5:
        # Dropdown for category selection
        categories = [
            'Collisionmanner',
            'Lightcondition',
            'Weather',
            'SurfaceCondition',
            'AlcoholUse_Drv1',
            'Gender_Drv1',
        ]
        selected_category = st.selectbox("Select Category:", categories)

        # Dropdown for year selection
        years = ['All Years'] + sorted(df['Year'].dropna().unique().astype(int).tolist())
        selected_year = st.selectbox("Select Year:", years)

        # Generate and display the distribution chart
        st.markdown(f"### Distribution of Incidents by {selected_category}")
        distribution_chart = create_category_distribution_chart(df, selected_category, selected_year)
        st.plotly_chart(distribution_chart, use_container_width=True)


if __name__ == "__main__":
    main()