hyzhang00's picture
fix: remove the number constrains on the geo map
d923522 verified
raw
history blame
6.44 kB
import streamlit as st
import pandas as pd
import plotly.express as px
import folium
from folium.plugins import HeatMap, MarkerCluster
from streamlit_folium import st_folium
@st.cache_data
def load_and_preprocess_data(file_path):
# Read the data
df = pd.read_csv(file_path)
# Basic preprocessing
df = df.drop(['X', 'Y'], axis=1)
df.dropna(subset=['Incidentid', 'DateTime', 'Year', 'Latitude', 'Longitude'], inplace=True)
# Convert Year to int
df['Year'] = df['Year'].astype(int)
# Fill missing values
numeric = ['Age_Drv1', 'Age_Drv2']
for col in numeric:
df[col].fillna(df[col].median(), inplace=True)
categorical = ['Gender_Drv1', 'Violation1_Drv1', 'AlcoholUse_Drv1', 'DrugUse_Drv1',
'Gender_Drv2', 'Violation1_Drv2', 'AlcoholUse_Drv2', 'DrugUse_Drv2',
'Unittype_Two', 'Traveldirection_Two', 'Unitaction_Two', 'CrossStreet']
for col in categorical:
df[col].fillna('Unknown', inplace=True)
# Remove invalid ages
df = df[
(df['Age_Drv1'] <= 90) &
(df['Age_Drv2'] <= 90) &
(df['Age_Drv1'] >= 16) &
(df['Age_Drv2'] >= 16)
]
# Create age groups
bins = [15, 25, 35, 45, 55, 65, 90]
labels = ['16-25', '26-35', '36-45', '46-55', '56-65', '65+']
df['Age_Group_Drv1'] = pd.cut(df['Age_Drv1'], bins=bins, labels=labels)
df['Age_Group_Drv2'] = pd.cut(df['Age_Drv2'], bins=bins, labels=labels)
return df
def create_severity_violation_chart(df, age_group=None):
# Apply age group filter if selected
if age_group != 'All Ages':
df = df[(df['Age_Group_Drv1'] == age_group) | (df['Age_Group_Drv2'] == age_group)]
# Combine violations from both drivers
violations_1 = df.groupby(['Violation1_Drv1', 'Injuryseverity']).size().reset_index(name='count')
violations_2 = df.groupby(['Violation1_Drv2', 'Injuryseverity']).size().reset_index(name='count')
violations_1.columns = ['Violation', 'Severity', 'count']
violations_2.columns = ['Violation', 'Severity', 'count']
violations = pd.concat([violations_1, violations_2])
violations = violations.groupby(['Violation', 'Severity'])['count'].sum().reset_index()
# Create visualization
fig = px.bar(
violations,
x='Violation',
y='count',
color='Severity',
title=f'Crash Severity Distribution by Violation Type - {age_group}',
labels={'count': 'Number of Incidents', 'Violation': 'Violation Type'},
height=600
)
fig.update_layout(
xaxis_tickangle=-45,
legend_title='Severity Level',
barmode='stack'
)
return fig
def get_top_violations(df, age_group):
if age_group == 'All Ages':
violations = pd.concat([
df['Violation1_Drv1'].value_counts(),
df['Violation1_Drv2'].value_counts()
]).groupby(level=0).sum()
else:
filtered_df = df[
(df['Age_Group_Drv1'] == age_group) |
(df['Age_Group_Drv2'] == age_group)
]
violations = pd.concat([
filtered_df['Violation1_Drv1'].value_counts(),
filtered_df['Violation1_Drv2'].value_counts()
]).groupby(level=0).sum()
# Convert to DataFrame and format
violations_df = violations.reset_index()
violations_df.columns = ['Violation Type', 'Count']
violations_df['Percentage'] = (violations_df['Count'] / violations_df['Count'].sum() * 100).round(2)
violations_df['Percentage'] = violations_df['Percentage'].map('{:.2f}%'.format)
return violations_df.head()
@st.cache_data
def create_map(df, selected_year):
filtered_df = df[df['Year'] == selected_year]
m = folium.Map(
location=[33.4255, -111.9400],
zoom_start=12,
control_scale=True,
tiles='CartoDB positron'
)
marker_cluster = MarkerCluster().add_to(m)
for _, row in filtered_df.iterrows():
folium.Marker(
location=[row['Latitude'], row['Longitude']],
popup=f"Accident at {row['Longitude']}, {row['Latitude']}<br>Date: {row['DateTime']}<br>Severity: {row['Injuryseverity']}",
icon=folium.Icon(color='red')
).add_to(marker_cluster)
heat_data = filtered_df[['Latitude', 'Longitude']].values.tolist()
HeatMap(heat_data, radius=15, max_zoom=13, min_opacity=0.3).add_to(m)
return m
def main():
st.title('Traffic Crash Analysis')
# Load data
df = load_and_preprocess_data('1.08_Crash_Data_Report_(detail).csv')
# Create tabs for different visualizations
tab1, tab2 = st.tabs(["Crash Statistics", "Crash Map"])
with tab1:
# Age group selection
age_groups = ['All Ages', '16-25', '26-35', '36-45', '46-55', '56-65', '65+']
selected_age = st.selectbox('Select Age Group:', age_groups)
# Create and display chart
fig = create_severity_violation_chart(df, selected_age)
st.plotly_chart(fig, use_container_width=True)
# Display statistics
if selected_age == 'All Ages':
total_incidents = len(df)
else:
total_incidents = len(df[
(df['Age_Group_Drv1'] == selected_age) |
(df['Age_Group_Drv2'] == selected_age)
])
# Create two columns for statistics
col1, col2 = st.columns(2)
with col1:
st.markdown(f"### Total Incidents")
st.markdown(f"**{total_incidents:,}** incidents for {selected_age}")
with col2:
st.markdown("### Top Violations")
top_violations = get_top_violations(df, selected_age)
st.table(top_violations)
with tab2:
# Year selection for map
years = sorted(df['Year'].unique())
selected_year = st.selectbox('Select Year:', years)
# Create and display map
st.markdown("### Crash Location Map")
map_placeholder = st.empty()
with map_placeholder:
m = create_map(df, selected_year)
map_data = st_folium(
m,
width=800,
height=600,
key=f"map_{selected_year}",
returned_objects=["null_drawing"]
)
if __name__ == "__main__":
main()