File size: 23,171 Bytes
df2cf07
 
21a14f8
df2cf07
 
 
 
 
 
 
 
52eeb9f
df2cf07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52eeb9f
df2cf07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52eeb9f
df2cf07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0929e07
 
df2cf07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52eeb9f
df2cf07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
###### Train CIFAR10 with PyTorch. ######

### IMPORT DEPENDENCIES

from torch.utils.data import DataLoader
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import gradio as gr
#import wandb
import math
import numpy as np
import matplotlib.pyplot as plt


import torchvision
import torchvision.transforms as transforms
import torchvision.models as models
import torch.optim.lr_scheduler as lr_scheduler
import os
import argparse
import torchattacks

from models import *

from tqdm import tqdm
from PIL import Image
import gradio as gr

# from utils import progress_bar

# CSS theme styling
theme = gr.themes.Base(
    font=[gr.themes.GoogleFont('Montserrat'), 'ui-sans-serif', 'system-ui', 'sans-serif'],
    primary_hue="emerald",
    secondary_hue="emerald",
    neutral_hue="zinc"
).set(
    body_text_color='*neutral_950',
    body_text_color_subdued='*neutral_950',
    block_shadow='*shadow_drop_lg',
    button_shadow='*shadow_drop_lg',
    block_title_text_color='*neutral_950',
    block_title_text_weight='500',
    slider_color='*secondary_600'
)

def normalize(img):
    min_im = np.min(img)
    np_img = img - min_im
    max_im = np.max(np_img)
    np_img /= max_im
    return np_img

def imshow(img, fig_name = "test_input.png"):
    try:
        img = img.clone().detach().cpu().numpy()
    except:
        print('img already numpy')

    plt.imshow(normalize(np.transpose(img, (1, 2, 0))))
    plt.savefig(fig_name)
    print(f'Figure saved as {fig_name}')
    return fig_name

def class_names(class_num, class_list): # converts the raw number label to text
    if (class_num < 0) and (class_num >= 10):
        gr.Warning("Class List Error")
        return
    return class_list[class_num]


### MAIN FUNCTION
best_acc = 0
def main(drop_type, epochs_sldr, train_sldr, test_sldr, learning_rate, optimizer, sigma_sldr, adv_attack, scheduler):

    ## Input protection
    if not drop_type:
        gr.Warning("Please select a model from the dropdown.")
        return
    if(epochs_sldr % 1 != 0):
        gr.Warning("Number of epochs must be an integer.")
        return
    if(train_sldr % 1 != 0):
        gr.Warning("Training batch size must be an integer.")
        return
    if(test_sldr % 1 != 0):
        gr.Warning("Testing batch size must be an integer.")
        return

    num_epochs = int(epochs_sldr)
    global learn_batch
    learn_batch = int(train_sldr)
    global test_batch
    test_batch = int(test_sldr)
    learning_rate = float(learning_rate)
    optimizer_choose = str(optimizer)
    sigma = float(sigma_sldr) 
    attack = str(adv_attack)
    scheduler_choose = str(scheduler)
    
    #wandb.init(entity=username, project="model-training")
    
    parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
    parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
    parser.add_argument('--resume', '-r', action='store_true',
                        help='resume from checkpoint')
    args = parser.parse_args()

    if torch.cuda.is_available():
        device = 'cuda'
        gr.Info("Cuda detected - running on Cuda")
    elif torch.backends.mps.is_available():
        device = 'mps'
        gr.Info("MPS detected - running on Metal")
    else:
        device = 'cpu'
        gr.Info("No GPU Detected - running on CPU")

    start_epoch = 0  # start from epoch 0 or last checkpoint epoch

    ## Data
    try:
        print('==> Preparing data..')
        transform_train = transforms.Compose([
            transforms.RandomCrop(32, padding=4),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
        ])

        transform_test = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
        ])

        trainset = torchvision.datasets.CIFAR10(
            root='./data', train=True, download=True, transform=transform_train)
        trainloader = DataLoader(
            trainset, batch_size=learn_batch, shuffle=True, num_workers=2)

        testset = torchvision.datasets.CIFAR10(
            root='./data', train=False, download=True, transform=transform_test)
        testloader = DataLoader(
            testset, batch_size=test_batch, shuffle=True, num_workers=2)

        classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
    except Exception as e:
        print(f"Error: {e}")
        gr.Warning(f"Data Loading Error: {e}")

    ## Model
    try:
        print('==> Building model..')
        net = models_dict.get(drop_type, None)

        # Make list of models containing either classifer or fc functions
        classifier_models = ['ConvNext_Small', 'ConvNext_Base', 'ConvNext_Large', 'DenseNet', 'EfficientNet_B0', 'MobileNetV2',
                            'MaxVit', 'MnasNet0_5', 'SqueezeNet', 'VGG19']
        fc_models = ['GoogLeNet', 'InceptionNetV3', 'RegNet_X_400MF', 'ResNet18', 'ShuffleNet_V2_X0_5']

        # Check dropdown choice for fc or classifier function implementation
        if net in classifier_models:
            num_ftrs = net.classifier[-1].in_features
            net.classifier[-1] = torch.nn.Linear(num_ftrs, len(classes))
        elif net in fc_models:
            num_ftrs = net.fc.in_features
            net.fc = torch.nn.Linear(num_ftrs, len(classes))
        
        net = net.to(device)

    except Exception as e:
        print(f"Error: {e}")
        gr.Warning(f"Model Building Error: {e}")

    # if args.resume:
    #     # Load checkpoint.
    #     print('==> Resuming from checkpoint..')
    #     assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!'
    #     checkpoint = torch.load('./checkpoint/ckpt.pth')
    #     net.load_state_dict(checkpoint['net'])
    #     best_acc = checkpoint['acc']
    #     start_epoch = checkpoint['epoch']

    SGDopt = optim.SGD(net.parameters(), lr=learning_rate,momentum=0.9, weight_decay=5e-4)
    Adamopt = optim.Adam(net.parameters(), lr=learning_rate, weight_decay=5e-4)

    criterion = nn.CrossEntropyLoss()

    if optimizer_choose == "SGD":
        optimizer = SGDopt
    elif optimizer_choose == "Adam":
        optimizer = Adamopt
    print (f'optimizer: {optimizer}')

    #scheduler = lr_scheduler.LinearLR(optimizer, start_factor=learning_rate, end_factor=0.0001, total_iters=10)
    if scheduler_choose == "CosineAnnealingLR":
        scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=200)
    elif scheduler_choose == "ReduceLROnPlateau":
        scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', patience=5)
    elif scheduler_choose == "StepLR":
        scheduler = lr_scheduler.StepLR(optimizer, step_size=30)
    print (f'scheduler: {scheduler_choose}')

    img_labels = [] # initialize list for label generation
    raw_image_list = [] # initialize list for image generation
    img_list1 = [] # initialize list for combined image/labels
    img_list2 = [] # initialize list for gaussian image generation
    img_list3 = [] # initialize list for adversarial attack image generation

    # The following lists are used when generating all images in an epoch instead of 10:
    full_img_labels = []
    full_raw_image_list = []
    full_img_list1 = []

    adv_num = 1 # initialize adversarial image number for naming purposes
    global gaussian_num 
    gaussian_num = 1 # initialize gaussian noise image number for naming purposes

    for epoch in range(start_epoch, start_epoch+epochs_sldr):
        if sigma == 0:
            train(epoch, net, trainloader, device, optimizer, criterion, sigma)
        else:
            gaussian_fig = train(epoch, net, trainloader, device, optimizer, criterion, sigma)
        acc, predicted = test(epoch, net, testloader, device, criterion)

        if scheduler_choose == "ReduceLROnPlateau":
            scheduler.step(metrics=acc)
        elif not scheduler_choose == "None":
            scheduler.step()
        
        if (((epoch-1) % 10 == 0) or (epoch == 0)) and (epoch != 1): # generate images every 10 epochs (and the 0th epoch)
            dataiter = iter(testloader)
            imgs, labels = next(dataiter)
            normalized_imgs = (imgs-imgs.min())/(imgs.max()-imgs.min())
            atk = torchattacks.PGD(net, eps=0.00015, alpha=0.0000000000000001, steps=7)
            if attack == "Yes":
                if normalized_imgs is None:
                    print("error occured")
                else:
                    print(torch.std(normalized_imgs))
                    atk.set_normalization_used(mean = torch.mean(normalized_imgs,axis=[0,2,3]), std=torch.std(normalized_imgs,axis=[0,2,3])/1.125)
                    adv_images = atk(imgs, labels)
                    fig_name = imshow(adv_images[0], fig_name = f'figures/adversarial_attack{adv_num}.png')
                    attack_fig = Image.open(fig_name)
                    for i in range(1): # generate 1 image per epoch
                        img_list3.append(attack_fig)
                        adv_num = adv_num + 1
            for i in range(10): # generate 10 images per epoch
                gradio_imgs = transforms.functional.to_pil_image(normalized_imgs[i])
                raw_image_list.append(gradio_imgs) 
                predicted_text = class_names(predicted[i].item(), classes)
                actual_text = class_names(labels[i].item(), classes)
                label_text = f'Epoch: {epoch} | Predicted: {predicted_text} | Actual: {actual_text}'
                img_labels.append(label_text)
            for i in range(test_batch): # generate all images per epoch
                full_gradio_imgs = transforms.functional.to_pil_image(normalized_imgs[i])
                full_raw_image_list.append(full_gradio_imgs)
                full_predicted_text = class_names(predicted[i].item(), classes)
                full_actual_text = class_names(labels[i].item(), classes)
                full_label_text = f'Epoch: {epoch} | Predicted: {full_predicted_text} | Actual: {full_actual_text}'
                full_img_labels.append(full_label_text)
            for i in range(len(raw_image_list)):
                img_tuple = (raw_image_list[i], img_labels[i])
                img_list1.append(img_tuple)
            for i in range(len(full_raw_image_list)):    
                full_img_tuple = (full_raw_image_list[i], full_img_labels[i])
                full_img_list1.append(full_img_tuple)
            if sigma != 0:
                    for i in range(1): # generate 1 image per epoch
                        img_list2.append(gaussian_fig)
                        gaussian_num = gaussian_num + 1
    if (sigma == 0) and (attack == "No"):
        return str(acc)+"%", img_list1, full_img_list1, None, None
    elif (sigma != 0) and (attack == "No"):
        return str(acc)+"%", img_list1, full_img_list1, img_list2, None
    elif (sigma == 0) and (attack == "Yes"):
        return str(acc)+"%", img_list1, full_img_list1, None, img_list3
    else:
        return str(acc)+"%", img_list1, full_img_list1, img_list2, img_list3



### TRAINING
def train(epoch, net, trainloader, device, optimizer, criterion, sigma, progress=gr.Progress()):
    try:
        print('\nEpoch: %d' % epoch)
        net.train()
        train_loss = 0
        correct = 0
        total = 0

        iter_float = 50000/learn_batch
        iterations = math.ceil(iter_float)
        iter_prog = 0

        for batch_idx, (inputs, targets) in tqdm(enumerate(trainloader)):
            if sigma == 0:
                inputs, targets = inputs.to(device), targets.to(device)
                optimizer.zero_grad()
                outputs = net(inputs)
            else:
                noise = np.random.normal(0, sigma, inputs.shape)
                inputs += torch.tensor(noise)
                inputs, targets = inputs.to(device), targets.to(device)
                optimizer.zero_grad()
                outputs = net(inputs)
                n_inputs = inputs.clone().detach().cpu().numpy()
                if(batch_idx%99 == 0):
                        fig_name = imshow(n_inputs[0], fig_name= f'figures/gaussian_noise{gaussian_num}.png')
                        gaussian_fig = Image.open(fig_name)

            loss = criterion(outputs, targets)
            loss.backward()
            optimizer.step()

            train_loss += loss.item()
            _, predicted = outputs.max(1)
            total += targets.size(0)
            correct += predicted.eq(targets).sum().item()

            iter_prog = iter_prog + 1 # Iterating iteration amount
            progress(iter_prog/iterations, desc=f"Training Epoch {epoch}", total=iterations)
            

            # progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
            #              % (train_loss/(batch_idx+1), 100.*correct/total, correct, total))

    except Exception as e:
        print(f"Error: {e}")
        gr.Warning(f"Training Error: {e}")
    if sigma != 0:
        return gaussian_fig


### TESTING

def test(epoch, net, testloader, device, criterion, progress = gr.Progress()):
    try:
        net.eval()
        test_loss = 0
        correct = 0
        total = 0

        iter_float = 10000/test_batch
        iterations = math.ceil(iter_float)
        iter_prog = 0

        with torch.no_grad():
            for batch_idx, (inputs, targets) in tqdm(enumerate(testloader)):
                inputs, targets = inputs.to(device), targets.to(device)
                outputs = net(inputs)
                loss = criterion(outputs, targets)

                test_loss += loss.item()
                _, predicted = outputs.max(1)
                total += targets.size(0)
                correct += predicted.eq(targets).sum().item()

                iter_prog = iter_prog + 1 # Iterating iteration amount
                progress(iter_prog/iterations, desc=f"Testing Epoch {epoch}", total=iterations)

            #wandb.log({'epoch': epoch+1, 'loss': test_loss})
            #wandb.log({"acc": correct/total})

                # progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
                #              % (test_loss/(batch_idx+1), 100.*correct/total, correct, total))

        # Save checkpoint.
        global best_acc
        global acc
        acc = 100.*correct/total
        print(acc)
        if acc > best_acc:
            best_acc = acc
            return best_acc, predicted
        else:
            return acc, predicted
        # if acc > best_acc:
        #     print('Saving..')
        #     state = {
        #         'net': net.state_dict(),
        #         'acc': acc,
        #         'epoch': epoch,
        #     }
        #     if not os.path.isdir('checkpoint'):
        #         os.mkdir('checkpoint')
        #     torch.save(state, './checkpoint/ckpt.pth')
        #     best_acc = acc
    
    except Exception as e:
        print(f"Error: {e}")
        gr.Warning(f"Testing Error: {e}")


models_dict = {
        #"AlexNet": models.AlexNet(weights=models.AlexNet_Weights.DEFAULT),
        #"ConvNext_Small": models.convnext_small(weights=models.ConvNeXt_Small_Weights.DEFAULT),
        #"ConvNext_Base": models.convnext_base(weights=models.ConvNeXt_Base_Weights.DEFAULT),
        #"ConvNext_Large": models.convnext_large(weights=models.ConvNeXt_Large_Weights.DEFAULT),
        "DenseNet": models.densenet121(weights=models.DenseNet121_Weights.DEFAULT),
        #"EfficientNet_B0": models.efficientnet_b0(weights=models.EfficientNet_B0_Weights.DEFAULT),
        #"GoogLeNet": models.googlenet(weights=models.GoogLeNet_Weights.DEFAULT),
        # "InceptionNetV3": models.inception_v3(weights=models.Inception_V3_Weights.DEFAULT),
        # "MaxVit": models.maxvit_t(weights=models.MaxVit_T_Weights.DEFAULT),
        #"MnasNet0_5": models.mnasnet0_5(weights=models.MNASNet0_5_Weights.DEFAULT),
        #"MobileNetV2": models.mobilenet_v2(weights=models.MobileNet_V2_Weights.DEFAULT),
        "ResNet18": models.resnet18(weights=models.ResNet18_Weights.DEFAULT),
        "ResNet50": models.resnet50(weights=models.ResNet50_Weights.DEFAULT),
        #"RegNet_X_400MF": models.regnet_x_400mf(weights=models.RegNet_X_400MF_Weights.DEFAULT),
        #"ShuffleNet_V2_X0_5": models.shufflenet_v2_x0_5(weights=models.ShuffleNet_V2_X0_5_Weights.DEFAULT),
        #"SqueezeNet": models.squeezenet1_0(weights=models.SqueezeNet1_0_Weights.DEFAULT),
        "VGG19": models.vgg19(weights=models.VGG19_Weights.DEFAULT)
}

# Store dictionary keys into list for dropdown menu choices
names = list(models_dict.keys())

# Optimizer names
optimizers = ["SGD","Adam"]

# Scheduler names
schedulers = ["None","CosineAnnealingLR","ReduceLROnPlateau","StepLR"]

### GRADIO APP INTERFACE

def togglepicsettings(choice):
    yes=gr.Gallery(visible=True)
    no=gr.Gallery(visible=False)
    if choice == "Yes":
        return yes,no
    else:
        return no,yes

def settings(choice):
    if choice == "Advanced":
        advanced = [
            gr.Slider(visible=True),
            gr.Slider(visible=True),
            gr.Slider(visible=True),
            gr.Dropdown(visible=True),
            gr.Dropdown(visible=True),
            gr.Radio(visible=True)
        ]
        return advanced
    else:
        basic = [
            gr.Slider(visible=False),
            gr.Slider(visible=False),
            gr.Slider(visible=False),
            gr.Dropdown(visible=False),
            gr.Dropdown(visible=False),
            gr.Radio(visible=False)
        ]
        return basic

def attacks(choice):
    if choice == "Yes":
        yes = [
            gr.Markdown(visible=True),
            gr.Radio(visible=True),
            gr.Radio(visible=True)
        ]
        return yes
    if choice == "No":
        no = [
            gr.Markdown(visible=False),
            gr.Radio(visible=False),
            gr.Radio(visible=False)
        ]
        return no
    
def gaussian(choice):
    if choice == "Yes":
        yes = [
            gr.Slider(visible=True),
            gr.Gallery(visible=True),
        ]
        return yes
    else:
        no = [
            gr.Slider(visible=False),
            gr.Gallery(visible=False),
        ]
        return no
def adversarial(choice):
    if choice == "Yes":
        yes = gr.Gallery(visible=True)
        return yes
    else:
        no = gr.Gallery(visible=False)

## Main app for functionality
with gr.Blocks(css=".caption-label {display:none}") as functionApp:
    with gr.Row():
        gr.Markdown("# CIFAR-10 Model Training GUI")
    with gr.Row():
        gr.Markdown("## Parameters")
    with gr.Row():
        inp = gr.Dropdown(choices=names, label="Training Model", value="ResNet18", info="Choose one of 13 common models provided in the dropdown to use for training.")
        epochs_sldr = gr.Slider(label="Number of Epochs", minimum=1, maximum=100, step=1, value=1, info="How many times the model will see the entire dataset during trianing.")
        with gr.Column():
            setting_radio = gr.Radio(["Basic", "Advanced"], label="Settings", value="Basic")
            btn = gr.Button("Run")        
    with gr.Row():
        train_sldr = gr.Slider(visible=False, label="Training Batch Size", minimum=1, maximum=1000, step=1, value=128, info="The number of training samples processed before the model's internal parameters are updated.")
        test_sldr = gr.Slider(visible=False, label="Testing Batch Size", minimum=1, maximum=1000, step=1, value=100, info="The number of testing samples processed at once during the evaluation phase.")
        learning_rate_sldr = gr.Slider(visible=False, label="Learning Rate", minimum=0.0001, maximum=0.1, step=0.0001, value=0.001, info="The learning rate of the optimization program.")
        optimizer = gr.Dropdown(visible=False, label="Optimizer", choices=optimizers, value="SGD", info="The optimization algorithm used to minimize the loss function during training.")
        scheduler = gr.Dropdown(visible=False, label="Scheduler", choices=schedulers, value="CosineAnnealingLR", info="The scheduler used to iteratively alter learning rate.")
        use_attacks = gr.Radio(["Yes", "No"], visible=False, label="Use Attacking Methods?", value="No")
        setting_radio.change(fn=settings, inputs=setting_radio, outputs=[train_sldr, test_sldr, learning_rate_sldr, optimizer, scheduler, use_attacks])
    with gr.Row():
        attack_method = gr.Markdown("## Attacking Methods", visible=False)
    with gr.Row():
        use_sigma = gr.Radio(["Yes","No"], visible=False, label="Use Gaussian Noise?", value="No")
        sigma_sldr = gr.Slider(visible=False, label="Gaussian Noise", minimum=0, maximum=1, value=0, step=0.1, info="The sigma value of the gaussian noise eqaution. A value of 0 disables gaussian noise.")
        adv_attack = gr.Radio(["Yes","No"], visible=False, label="Use Adversarial Attacks?", value="No")
    with gr.Row():
        gr.Markdown("## Training Results")
    with gr.Row():
        accuracy = gr.Textbox(label = "Accuracy", info="The validation accuracy of the trained model (accuracy evaluated on testing data).")
        with gr.Column():
            showpics = gr.Radio(["Yes","No"], visible = True, label = "Show all pictures?", value = "No")
            pics = gr.Gallery(preview=False, selected_index=0, object_fit='contain', label="Testing Images")
            allpics = gr.Gallery(preview=True, selected_index=0, object_fit='contain', label="Full Testing Images",visible = False)
            showpics.change(fn=togglepicsettings, inputs=[showpics], outputs = [allpics, pics])
    with gr.Row():
        gaussian_pics = gr.Gallery(visible=False, preview=False, selected_index=0, object_fit='contain', label="Gaussian Noise")
        attack_pics = gr.Gallery(visible=False, preview=False, selected_index=0, object_fit='contain', label="Adversarial Attack")
        use_attacks.change(fn=attacks, inputs=use_attacks, outputs=[attack_method, use_sigma, adv_attack])
        use_sigma.change(fn=gaussian, inputs=use_sigma, outputs=[sigma_sldr, gaussian_pics])
        adv_attack.change(fn=adversarial, inputs=adv_attack, outputs=attack_pics)
        btn.click(fn=main, inputs=[inp, epochs_sldr, train_sldr, test_sldr, learning_rate_sldr, optimizer, sigma_sldr, adv_attack, scheduler], outputs=[accuracy, pics, allpics, gaussian_pics, attack_pics])

## Documentation app (implemented as second tab)

markdown_file_path = 'documentation.md'
with open(markdown_file_path, 'r') as file:
    markdown_content = file.read()

with gr.Blocks() as documentationApp:
    with gr.Row():
        gr.Markdown("# CIFAR-10 Training Interface Documentation")
    with gr.Row():
        gr.Markdown(markdown_content) # Can be collapesed in VSCode to hide paragraphs from view. Vscode can also wrap text.

### LAUNCH APP

if __name__ == '__main__':
    mainApp = gr.TabbedInterface([functionApp, documentationApp], ["Welcome", "Documentation"], theme=theme)
    mainApp.queue()
    mainApp.launch()