File size: 23,171 Bytes
df2cf07 21a14f8 df2cf07 52eeb9f df2cf07 52eeb9f df2cf07 52eeb9f df2cf07 0929e07 df2cf07 52eeb9f df2cf07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 |
###### Train CIFAR10 with PyTorch. ######
### IMPORT DEPENDENCIES
from torch.utils.data import DataLoader
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import gradio as gr
#import wandb
import math
import numpy as np
import matplotlib.pyplot as plt
import torchvision
import torchvision.transforms as transforms
import torchvision.models as models
import torch.optim.lr_scheduler as lr_scheduler
import os
import argparse
import torchattacks
from models import *
from tqdm import tqdm
from PIL import Image
import gradio as gr
# from utils import progress_bar
# CSS theme styling
theme = gr.themes.Base(
font=[gr.themes.GoogleFont('Montserrat'), 'ui-sans-serif', 'system-ui', 'sans-serif'],
primary_hue="emerald",
secondary_hue="emerald",
neutral_hue="zinc"
).set(
body_text_color='*neutral_950',
body_text_color_subdued='*neutral_950',
block_shadow='*shadow_drop_lg',
button_shadow='*shadow_drop_lg',
block_title_text_color='*neutral_950',
block_title_text_weight='500',
slider_color='*secondary_600'
)
def normalize(img):
min_im = np.min(img)
np_img = img - min_im
max_im = np.max(np_img)
np_img /= max_im
return np_img
def imshow(img, fig_name = "test_input.png"):
try:
img = img.clone().detach().cpu().numpy()
except:
print('img already numpy')
plt.imshow(normalize(np.transpose(img, (1, 2, 0))))
plt.savefig(fig_name)
print(f'Figure saved as {fig_name}')
return fig_name
def class_names(class_num, class_list): # converts the raw number label to text
if (class_num < 0) and (class_num >= 10):
gr.Warning("Class List Error")
return
return class_list[class_num]
### MAIN FUNCTION
best_acc = 0
def main(drop_type, epochs_sldr, train_sldr, test_sldr, learning_rate, optimizer, sigma_sldr, adv_attack, scheduler):
## Input protection
if not drop_type:
gr.Warning("Please select a model from the dropdown.")
return
if(epochs_sldr % 1 != 0):
gr.Warning("Number of epochs must be an integer.")
return
if(train_sldr % 1 != 0):
gr.Warning("Training batch size must be an integer.")
return
if(test_sldr % 1 != 0):
gr.Warning("Testing batch size must be an integer.")
return
num_epochs = int(epochs_sldr)
global learn_batch
learn_batch = int(train_sldr)
global test_batch
test_batch = int(test_sldr)
learning_rate = float(learning_rate)
optimizer_choose = str(optimizer)
sigma = float(sigma_sldr)
attack = str(adv_attack)
scheduler_choose = str(scheduler)
#wandb.init(entity=username, project="model-training")
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
parser.add_argument('--resume', '-r', action='store_true',
help='resume from checkpoint')
args = parser.parse_args()
if torch.cuda.is_available():
device = 'cuda'
gr.Info("Cuda detected - running on Cuda")
elif torch.backends.mps.is_available():
device = 'mps'
gr.Info("MPS detected - running on Metal")
else:
device = 'cpu'
gr.Info("No GPU Detected - running on CPU")
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
## Data
try:
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
trainset = torchvision.datasets.CIFAR10(
root='./data', train=True, download=True, transform=transform_train)
trainloader = DataLoader(
trainset, batch_size=learn_batch, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(
root='./data', train=False, download=True, transform=transform_test)
testloader = DataLoader(
testset, batch_size=test_batch, shuffle=True, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
except Exception as e:
print(f"Error: {e}")
gr.Warning(f"Data Loading Error: {e}")
## Model
try:
print('==> Building model..')
net = models_dict.get(drop_type, None)
# Make list of models containing either classifer or fc functions
classifier_models = ['ConvNext_Small', 'ConvNext_Base', 'ConvNext_Large', 'DenseNet', 'EfficientNet_B0', 'MobileNetV2',
'MaxVit', 'MnasNet0_5', 'SqueezeNet', 'VGG19']
fc_models = ['GoogLeNet', 'InceptionNetV3', 'RegNet_X_400MF', 'ResNet18', 'ShuffleNet_V2_X0_5']
# Check dropdown choice for fc or classifier function implementation
if net in classifier_models:
num_ftrs = net.classifier[-1].in_features
net.classifier[-1] = torch.nn.Linear(num_ftrs, len(classes))
elif net in fc_models:
num_ftrs = net.fc.in_features
net.fc = torch.nn.Linear(num_ftrs, len(classes))
net = net.to(device)
except Exception as e:
print(f"Error: {e}")
gr.Warning(f"Model Building Error: {e}")
# if args.resume:
# # Load checkpoint.
# print('==> Resuming from checkpoint..')
# assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!'
# checkpoint = torch.load('./checkpoint/ckpt.pth')
# net.load_state_dict(checkpoint['net'])
# best_acc = checkpoint['acc']
# start_epoch = checkpoint['epoch']
SGDopt = optim.SGD(net.parameters(), lr=learning_rate,momentum=0.9, weight_decay=5e-4)
Adamopt = optim.Adam(net.parameters(), lr=learning_rate, weight_decay=5e-4)
criterion = nn.CrossEntropyLoss()
if optimizer_choose == "SGD":
optimizer = SGDopt
elif optimizer_choose == "Adam":
optimizer = Adamopt
print (f'optimizer: {optimizer}')
#scheduler = lr_scheduler.LinearLR(optimizer, start_factor=learning_rate, end_factor=0.0001, total_iters=10)
if scheduler_choose == "CosineAnnealingLR":
scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=200)
elif scheduler_choose == "ReduceLROnPlateau":
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', patience=5)
elif scheduler_choose == "StepLR":
scheduler = lr_scheduler.StepLR(optimizer, step_size=30)
print (f'scheduler: {scheduler_choose}')
img_labels = [] # initialize list for label generation
raw_image_list = [] # initialize list for image generation
img_list1 = [] # initialize list for combined image/labels
img_list2 = [] # initialize list for gaussian image generation
img_list3 = [] # initialize list for adversarial attack image generation
# The following lists are used when generating all images in an epoch instead of 10:
full_img_labels = []
full_raw_image_list = []
full_img_list1 = []
adv_num = 1 # initialize adversarial image number for naming purposes
global gaussian_num
gaussian_num = 1 # initialize gaussian noise image number for naming purposes
for epoch in range(start_epoch, start_epoch+epochs_sldr):
if sigma == 0:
train(epoch, net, trainloader, device, optimizer, criterion, sigma)
else:
gaussian_fig = train(epoch, net, trainloader, device, optimizer, criterion, sigma)
acc, predicted = test(epoch, net, testloader, device, criterion)
if scheduler_choose == "ReduceLROnPlateau":
scheduler.step(metrics=acc)
elif not scheduler_choose == "None":
scheduler.step()
if (((epoch-1) % 10 == 0) or (epoch == 0)) and (epoch != 1): # generate images every 10 epochs (and the 0th epoch)
dataiter = iter(testloader)
imgs, labels = next(dataiter)
normalized_imgs = (imgs-imgs.min())/(imgs.max()-imgs.min())
atk = torchattacks.PGD(net, eps=0.00015, alpha=0.0000000000000001, steps=7)
if attack == "Yes":
if normalized_imgs is None:
print("error occured")
else:
print(torch.std(normalized_imgs))
atk.set_normalization_used(mean = torch.mean(normalized_imgs,axis=[0,2,3]), std=torch.std(normalized_imgs,axis=[0,2,3])/1.125)
adv_images = atk(imgs, labels)
fig_name = imshow(adv_images[0], fig_name = f'figures/adversarial_attack{adv_num}.png')
attack_fig = Image.open(fig_name)
for i in range(1): # generate 1 image per epoch
img_list3.append(attack_fig)
adv_num = adv_num + 1
for i in range(10): # generate 10 images per epoch
gradio_imgs = transforms.functional.to_pil_image(normalized_imgs[i])
raw_image_list.append(gradio_imgs)
predicted_text = class_names(predicted[i].item(), classes)
actual_text = class_names(labels[i].item(), classes)
label_text = f'Epoch: {epoch} | Predicted: {predicted_text} | Actual: {actual_text}'
img_labels.append(label_text)
for i in range(test_batch): # generate all images per epoch
full_gradio_imgs = transforms.functional.to_pil_image(normalized_imgs[i])
full_raw_image_list.append(full_gradio_imgs)
full_predicted_text = class_names(predicted[i].item(), classes)
full_actual_text = class_names(labels[i].item(), classes)
full_label_text = f'Epoch: {epoch} | Predicted: {full_predicted_text} | Actual: {full_actual_text}'
full_img_labels.append(full_label_text)
for i in range(len(raw_image_list)):
img_tuple = (raw_image_list[i], img_labels[i])
img_list1.append(img_tuple)
for i in range(len(full_raw_image_list)):
full_img_tuple = (full_raw_image_list[i], full_img_labels[i])
full_img_list1.append(full_img_tuple)
if sigma != 0:
for i in range(1): # generate 1 image per epoch
img_list2.append(gaussian_fig)
gaussian_num = gaussian_num + 1
if (sigma == 0) and (attack == "No"):
return str(acc)+"%", img_list1, full_img_list1, None, None
elif (sigma != 0) and (attack == "No"):
return str(acc)+"%", img_list1, full_img_list1, img_list2, None
elif (sigma == 0) and (attack == "Yes"):
return str(acc)+"%", img_list1, full_img_list1, None, img_list3
else:
return str(acc)+"%", img_list1, full_img_list1, img_list2, img_list3
### TRAINING
def train(epoch, net, trainloader, device, optimizer, criterion, sigma, progress=gr.Progress()):
try:
print('\nEpoch: %d' % epoch)
net.train()
train_loss = 0
correct = 0
total = 0
iter_float = 50000/learn_batch
iterations = math.ceil(iter_float)
iter_prog = 0
for batch_idx, (inputs, targets) in tqdm(enumerate(trainloader)):
if sigma == 0:
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
else:
noise = np.random.normal(0, sigma, inputs.shape)
inputs += torch.tensor(noise)
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
n_inputs = inputs.clone().detach().cpu().numpy()
if(batch_idx%99 == 0):
fig_name = imshow(n_inputs[0], fig_name= f'figures/gaussian_noise{gaussian_num}.png')
gaussian_fig = Image.open(fig_name)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
iter_prog = iter_prog + 1 # Iterating iteration amount
progress(iter_prog/iterations, desc=f"Training Epoch {epoch}", total=iterations)
# progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
# % (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
except Exception as e:
print(f"Error: {e}")
gr.Warning(f"Training Error: {e}")
if sigma != 0:
return gaussian_fig
### TESTING
def test(epoch, net, testloader, device, criterion, progress = gr.Progress()):
try:
net.eval()
test_loss = 0
correct = 0
total = 0
iter_float = 10000/test_batch
iterations = math.ceil(iter_float)
iter_prog = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in tqdm(enumerate(testloader)):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
iter_prog = iter_prog + 1 # Iterating iteration amount
progress(iter_prog/iterations, desc=f"Testing Epoch {epoch}", total=iterations)
#wandb.log({'epoch': epoch+1, 'loss': test_loss})
#wandb.log({"acc": correct/total})
# progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
# % (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
# Save checkpoint.
global best_acc
global acc
acc = 100.*correct/total
print(acc)
if acc > best_acc:
best_acc = acc
return best_acc, predicted
else:
return acc, predicted
# if acc > best_acc:
# print('Saving..')
# state = {
# 'net': net.state_dict(),
# 'acc': acc,
# 'epoch': epoch,
# }
# if not os.path.isdir('checkpoint'):
# os.mkdir('checkpoint')
# torch.save(state, './checkpoint/ckpt.pth')
# best_acc = acc
except Exception as e:
print(f"Error: {e}")
gr.Warning(f"Testing Error: {e}")
models_dict = {
#"AlexNet": models.AlexNet(weights=models.AlexNet_Weights.DEFAULT),
#"ConvNext_Small": models.convnext_small(weights=models.ConvNeXt_Small_Weights.DEFAULT),
#"ConvNext_Base": models.convnext_base(weights=models.ConvNeXt_Base_Weights.DEFAULT),
#"ConvNext_Large": models.convnext_large(weights=models.ConvNeXt_Large_Weights.DEFAULT),
"DenseNet": models.densenet121(weights=models.DenseNet121_Weights.DEFAULT),
#"EfficientNet_B0": models.efficientnet_b0(weights=models.EfficientNet_B0_Weights.DEFAULT),
#"GoogLeNet": models.googlenet(weights=models.GoogLeNet_Weights.DEFAULT),
# "InceptionNetV3": models.inception_v3(weights=models.Inception_V3_Weights.DEFAULT),
# "MaxVit": models.maxvit_t(weights=models.MaxVit_T_Weights.DEFAULT),
#"MnasNet0_5": models.mnasnet0_5(weights=models.MNASNet0_5_Weights.DEFAULT),
#"MobileNetV2": models.mobilenet_v2(weights=models.MobileNet_V2_Weights.DEFAULT),
"ResNet18": models.resnet18(weights=models.ResNet18_Weights.DEFAULT),
"ResNet50": models.resnet50(weights=models.ResNet50_Weights.DEFAULT),
#"RegNet_X_400MF": models.regnet_x_400mf(weights=models.RegNet_X_400MF_Weights.DEFAULT),
#"ShuffleNet_V2_X0_5": models.shufflenet_v2_x0_5(weights=models.ShuffleNet_V2_X0_5_Weights.DEFAULT),
#"SqueezeNet": models.squeezenet1_0(weights=models.SqueezeNet1_0_Weights.DEFAULT),
"VGG19": models.vgg19(weights=models.VGG19_Weights.DEFAULT)
}
# Store dictionary keys into list for dropdown menu choices
names = list(models_dict.keys())
# Optimizer names
optimizers = ["SGD","Adam"]
# Scheduler names
schedulers = ["None","CosineAnnealingLR","ReduceLROnPlateau","StepLR"]
### GRADIO APP INTERFACE
def togglepicsettings(choice):
yes=gr.Gallery(visible=True)
no=gr.Gallery(visible=False)
if choice == "Yes":
return yes,no
else:
return no,yes
def settings(choice):
if choice == "Advanced":
advanced = [
gr.Slider(visible=True),
gr.Slider(visible=True),
gr.Slider(visible=True),
gr.Dropdown(visible=True),
gr.Dropdown(visible=True),
gr.Radio(visible=True)
]
return advanced
else:
basic = [
gr.Slider(visible=False),
gr.Slider(visible=False),
gr.Slider(visible=False),
gr.Dropdown(visible=False),
gr.Dropdown(visible=False),
gr.Radio(visible=False)
]
return basic
def attacks(choice):
if choice == "Yes":
yes = [
gr.Markdown(visible=True),
gr.Radio(visible=True),
gr.Radio(visible=True)
]
return yes
if choice == "No":
no = [
gr.Markdown(visible=False),
gr.Radio(visible=False),
gr.Radio(visible=False)
]
return no
def gaussian(choice):
if choice == "Yes":
yes = [
gr.Slider(visible=True),
gr.Gallery(visible=True),
]
return yes
else:
no = [
gr.Slider(visible=False),
gr.Gallery(visible=False),
]
return no
def adversarial(choice):
if choice == "Yes":
yes = gr.Gallery(visible=True)
return yes
else:
no = gr.Gallery(visible=False)
## Main app for functionality
with gr.Blocks(css=".caption-label {display:none}") as functionApp:
with gr.Row():
gr.Markdown("# CIFAR-10 Model Training GUI")
with gr.Row():
gr.Markdown("## Parameters")
with gr.Row():
inp = gr.Dropdown(choices=names, label="Training Model", value="ResNet18", info="Choose one of 13 common models provided in the dropdown to use for training.")
epochs_sldr = gr.Slider(label="Number of Epochs", minimum=1, maximum=100, step=1, value=1, info="How many times the model will see the entire dataset during trianing.")
with gr.Column():
setting_radio = gr.Radio(["Basic", "Advanced"], label="Settings", value="Basic")
btn = gr.Button("Run")
with gr.Row():
train_sldr = gr.Slider(visible=False, label="Training Batch Size", minimum=1, maximum=1000, step=1, value=128, info="The number of training samples processed before the model's internal parameters are updated.")
test_sldr = gr.Slider(visible=False, label="Testing Batch Size", minimum=1, maximum=1000, step=1, value=100, info="The number of testing samples processed at once during the evaluation phase.")
learning_rate_sldr = gr.Slider(visible=False, label="Learning Rate", minimum=0.0001, maximum=0.1, step=0.0001, value=0.001, info="The learning rate of the optimization program.")
optimizer = gr.Dropdown(visible=False, label="Optimizer", choices=optimizers, value="SGD", info="The optimization algorithm used to minimize the loss function during training.")
scheduler = gr.Dropdown(visible=False, label="Scheduler", choices=schedulers, value="CosineAnnealingLR", info="The scheduler used to iteratively alter learning rate.")
use_attacks = gr.Radio(["Yes", "No"], visible=False, label="Use Attacking Methods?", value="No")
setting_radio.change(fn=settings, inputs=setting_radio, outputs=[train_sldr, test_sldr, learning_rate_sldr, optimizer, scheduler, use_attacks])
with gr.Row():
attack_method = gr.Markdown("## Attacking Methods", visible=False)
with gr.Row():
use_sigma = gr.Radio(["Yes","No"], visible=False, label="Use Gaussian Noise?", value="No")
sigma_sldr = gr.Slider(visible=False, label="Gaussian Noise", minimum=0, maximum=1, value=0, step=0.1, info="The sigma value of the gaussian noise eqaution. A value of 0 disables gaussian noise.")
adv_attack = gr.Radio(["Yes","No"], visible=False, label="Use Adversarial Attacks?", value="No")
with gr.Row():
gr.Markdown("## Training Results")
with gr.Row():
accuracy = gr.Textbox(label = "Accuracy", info="The validation accuracy of the trained model (accuracy evaluated on testing data).")
with gr.Column():
showpics = gr.Radio(["Yes","No"], visible = True, label = "Show all pictures?", value = "No")
pics = gr.Gallery(preview=False, selected_index=0, object_fit='contain', label="Testing Images")
allpics = gr.Gallery(preview=True, selected_index=0, object_fit='contain', label="Full Testing Images",visible = False)
showpics.change(fn=togglepicsettings, inputs=[showpics], outputs = [allpics, pics])
with gr.Row():
gaussian_pics = gr.Gallery(visible=False, preview=False, selected_index=0, object_fit='contain', label="Gaussian Noise")
attack_pics = gr.Gallery(visible=False, preview=False, selected_index=0, object_fit='contain', label="Adversarial Attack")
use_attacks.change(fn=attacks, inputs=use_attacks, outputs=[attack_method, use_sigma, adv_attack])
use_sigma.change(fn=gaussian, inputs=use_sigma, outputs=[sigma_sldr, gaussian_pics])
adv_attack.change(fn=adversarial, inputs=adv_attack, outputs=attack_pics)
btn.click(fn=main, inputs=[inp, epochs_sldr, train_sldr, test_sldr, learning_rate_sldr, optimizer, sigma_sldr, adv_attack, scheduler], outputs=[accuracy, pics, allpics, gaussian_pics, attack_pics])
## Documentation app (implemented as second tab)
markdown_file_path = 'documentation.md'
with open(markdown_file_path, 'r') as file:
markdown_content = file.read()
with gr.Blocks() as documentationApp:
with gr.Row():
gr.Markdown("# CIFAR-10 Training Interface Documentation")
with gr.Row():
gr.Markdown(markdown_content) # Can be collapesed in VSCode to hide paragraphs from view. Vscode can also wrap text.
### LAUNCH APP
if __name__ == '__main__':
mainApp = gr.TabbedInterface([functionApp, documentationApp], ["Welcome", "Documentation"], theme=theme)
mainApp.queue()
mainApp.launch()
|