File size: 19,838 Bytes
36cc9c0
abcb943
 
 
944060d
36cc9c0
 
944060d
abcb943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
291e330
 
284ad13
 
36cc9c0
291e330
 
 
 
 
24265ea
291e330
24265ea
 
291e330
 
 
 
 
 
 
 
 
 
3224c57
291e330
78c8d84
291e330
 
 
78c8d84
291e330
 
 
944060d
291e330
 
 
 
 
 
 
 
 
78c8d84
291e330
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97a08ff
291e330
 
 
 
 
11400bb
abcb943
 
 
bea7945
97a08ff
 
 
36cc9c0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
from Recent_match_scrapper import get_matches_stats
import os
import pandas as pd
import numpy as np
from Meta_scrapper import *
from helper import merge_stats,  process_kda_perfect, ChampionConverter
from Player_scrapper import get_player_stats
from Weekly_meta_scrapper import *
import pandas as pd
import re

# ============================================ my functions =========================================================


def create_champion_features_and_return_df(merged_player_stats=None, meta_stats=None, weekly_meta=None, debug=None, consider_team_comp=True, test_mode=False):
    """
    Create features for champion prediction using player data.
    Champion names will be used as column headers.
    Uses pd.concat to avoid DataFrame fragmentation.
    """
    try:
        if merged_player_stats is None:
            print("Loading merged player stats...")
            input_file = os.path.join("util", "data", "player_stats_merged.csv")
            merged_player_stats = pd.read_csv(input_file, low_memory=False)
            
        #processing kda value
        merged_player_stats = process_kda_perfect(merged_player_stats)
   

        if test_mode:
            print("Test mode: Using only first 100 rows")
            merged_player_stats = merged_player_stats.head(100)
        
        if meta_stats is None:
            print("Loading meta stats...")
            meta_file = os.path.join("util", "data", "meta_stats.csv")
            meta_stats = pd.read_csv(meta_file, low_memory=False)

        if weekly_meta is None:
            print("Loading weekly meta stats...")
            weekly_file = os.path.join("util", "data", "weekly_meta_stats.csv")
            weekly_meta = pd.read_csv(weekly_file, low_memory=False)
        
        
        # Initialize variables
        debug_data = []
        original_columns = merged_player_stats.columns.tolist()
        feature_dict = {}

        # Copy original columns
        for col in merged_player_stats.columns:
            feature_dict[col] = merged_player_stats[col].values.copy()


        # Initialize the champion converter
        converter = ChampionConverter()
        all_champions = converter.champions
        #total_champions = len(converter.champions)
        
            

        # Get low tier champions and counter information
        tier_penalties = {3: 0.9, 4: 0.85, 5: 0.8}

        # Create tier_map as a dictionary of lists
        tier_map = {}
        for _, row in meta_stats.iterrows():
            champ = row['champion']
            tier = row['tier']
            if pd.notna(tier):
                if champ in tier_map:
                    tier_map[champ].append(tier)
                else:
                    tier_map[champ] = [tier]

        counter_map = {}
        for _, row in meta_stats.iterrows():
            if pd.notna(row['counter1']):
                champ = row['champion']
                counters = [row['counter1'], row['counter2'], row['counter3']]
                if champ in counter_map:
                    counter_map[champ].extend([c for c in counters if pd.notna(c)])
                else:
                    counter_map[champ] = [c for c in counters if pd.notna(c)]

        # Ensure unique counters and remove duplicates
        for champ, counters in counter_map.items():
            counter_map[champ] = list(set(counters))

        # Move 'champion' column to the first position
        cols = ['champion'] + [col for col in merged_player_stats if col != 'champion']
        merged_player_stats = merged_player_stats[cols]

        # Define importance weights
        weights = {
            'recent': 0.3,    # Last 20 games
            'weekly': 0.4,    # Last 7 days
            'meta': 0.2,      # Only from weekly_stats
            'season': 0.06,   # Current season
            'mastery': 0.04   # All-time mastery
        }

        # Process rows in batches
        batch_size = 100
        total_rows = len(merged_player_stats)
        
        print(f"Total rows: {total_rows}")

        for batch_start in range(0, total_rows, batch_size):
            batch_end = min(batch_start + batch_size, total_rows)
            batch_rows = merged_player_stats.iloc[batch_start:batch_end]
            print(f"\nProcessing rows {batch_start} to {batch_end} ({batch_start/total_rows*100:.2f}% complete)")

            # Initialize batch scores dictionary
            batch_scores = {champion: np.zeros(len(batch_rows)) for champion in all_champions}
            
            # Process each row in this batch
            for batch_idx, (idx, row) in enumerate(batch_rows.iterrows()):
                # Process each champion for this row
                for champion in all_champions:
                    # Initialize scores for this champion and row
                    champion_scores = {
                        'recent_score': 0,
                        'weekly_score': 0,
                        'meta_score': 0,
                        'season_score': 0,
                        'mastery_score': 0
                    }

                    # Store debug info if needed
                    base_score_before_penalty = 0
                    counter_penalty = 0
                    counter_debug = []

                    # 1. Recent Performance
                    for i in range(1, 4):
                        if row.get(f'most_champ_{i}') == champion:
                            wr = float(row[f'WR_{i}']) if pd.notna(row[f'WR_{i}']) else 0
                            kda = float(row[f'KDA_{i}']) if pd.notna(row[f'KDA_{i}']) else 0
                            wins = float(row[f'W_{i}']) if pd.notna(row[f'W_{i}']) else 0
                            losses = float(row[f'L_{i}']) if pd.notna(row[f'L_{i}']) else 0
                            games = wins + losses
                            total_games = float(row['total_games']) if pd.notna(row['total_games']) else 20
                            
                            performance_quality = (
                                (wr * 0.7) +
                                (min(kda, 10) / 10 * 0.3)
                            )
                            
                            games_factor = min(games / 5, 1.0)
                            games_ratio = games / total_games
                            
                            if games >= 5:
                                if performance_quality < 0.4:
                                    performance_quality *= 0.8
                                elif performance_quality > 0.7:
                                    performance_quality *= 1.2
                            
                            champion_scores['recent_score'] = (
                                performance_quality * (0.7 + (0.3 * games_factor))
                            ) * (1 + games_ratio * 0.2)
                            break  # Exit loop once found
                    
                    # 2. Weekly Performance
                    for i in range(1, 4):
                        if row.get(f'7d_champ_{i}') == champion:
                            weekly_wins = float(row[f'7d_W_{i}']) if pd.notna(row[f'7d_W_{i}']) else 0
                            weekly_losses = float(row[f'7d_L_{i}']) if pd.notna(row[f'7d_L_{i}']) else 0
                            weekly_games = float(row[f'7d_total_{i}']) if pd.notna(row[f'7d_total_{i}']) else 0
                            weekly_wr = float(row[f'7d_WR_{i}']) if pd.notna(row[f'7d_WR_{i}']) else 0
                            profile_wr = float(row['win_rate']) if pd.notna(row['win_rate']) else 0.5
                            
                            if weekly_games > 0:
                                wr_trend = (weekly_wr - profile_wr) / profile_wr if profile_wr > 0 else 0
                                weekly_intensity = min(weekly_games / 10, 1.0)
                                win_ratio = weekly_wins / weekly_games if weekly_games > 0 else 0
                                
                                weekly_performance = (
                                    (weekly_wr * 0.4) +
                                    (max(min(wr_trend, 1), -1) * 0.2) +
                                    (weekly_intensity * 0.2) +
                                    (win_ratio * 0.2)
                                )
                                
                                if weekly_games >= 5:
                                    if weekly_performance < 0.4:
                                        weekly_performance *= 0.8
                                    elif weekly_performance > 0.7:
                                        weekly_performance *= 1.2
                                
                                champion_scores['weekly_score'] = weekly_performance * (
                                    0.7 + (0.3 * min(weekly_games / 5, 1.0))
                                )
                                break  # Exit loop once found

                    # 3. Meta Score
                    if champion in weekly_meta['champion'].values:
                        weekly_row = weekly_meta[weekly_meta['champion'] == champion].iloc[0]
                        rank = weekly_row['rank']
                        games = weekly_row['games']
                        pick_rate = weekly_row['pick']
                        ban_rate = weekly_row['ban']
                        
                        weight = (
                            1 / rank * 0.5 +
                            games / 100 * 0.3 +
                            pick_rate * 0.1 -
                            ban_rate * 0.1
                        )
                        
                        champion_scores['meta_score'] = weight

                    # 4. Season Performance
                    for i in range(1, 8):
                        if row.get(f'season_champ_{i}') == champion:
                            wr = float(row[f'wr_ssn_{i}']) if pd.notna(row[f'wr_ssn_{i}']) else 0
                            games = float(row[f'games_ssn_{i}']) if pd.notna(row[f'games_ssn_{i}']) else 0
                            kda = float(row[f'kda_ssn_{i}']) if pd.notna(row[f'kda_ssn_{i}']) else 0
                            
                            champion_scores['season_score'] = (
                                wr * 0.7 +
                                (kda / 10) * 0.3 
                            ) * (games / 100)
                            break  # Exit loop once found
                    
                    # 5. Mastery Score
                    for i in range(1, 17):
                        if row.get(f'mastery_champ_{i}') == champion:
                            mastery = float(row[f'm_lv_{i}']) if pd.notna(row[f'm_lv_{i}']) else 0            
                            champion_scores['mastery_score'] = mastery / 7
                            break  # Exit loop once found

                    # Calculate base score for this champion and row
                    base_score = (
                        champion_scores['recent_score'] * weights['recent'] +
                        champion_scores['weekly_score'] * weights['weekly'] +
                        champion_scores['meta_score'] * weights['meta'] +
                        champion_scores['season_score'] * weights['season'] +
                        champion_scores['mastery_score'] * weights['mastery']
                    )

                    
                    # Store the pre-penalty score for debugging
                    base_score_before_penalty = base_score

                    # Apply tier penalties
                    if champion in tier_map:
                        highest_tier = min(tier_map[champion])
                        if highest_tier in tier_penalties:
                            base_score *= tier_penalties[highest_tier]

                    # Process team composition and counter penalties
                    if consider_team_comp:
                        # Check team champions
                        for i in range(1, 5):
                            team_col = f'team_champ{i}'
                            if team_col in row and pd.notna(row[team_col]):
                                if row[team_col] == champion:
                                    base_score = 0
                                    break
                        
                        # Only check opponents if base_score isn't already 0
                        if base_score != 0:
                            counter_penalty = 0
                            counter_debug = []  # For debug information
                            
                            for i in range(1, 6):
                                opp_col = f'opp_champ{i}'
                                if opp_col in row and pd.notna(row[opp_col]):
                                    opp_champ = row[opp_col]
                                    if opp_champ == champion:
                                        base_score = 0
                                        break
                                    if champion in counter_map and opp_champ in counter_map[champion]:
                                        counter_penalty += 0.1
                                        counter_debug.append(opp_champ)
                            
                            if counter_penalty > 0:
                                base_score = base_score * (1 - counter_penalty)

                    # Store the final score for this champion and row
                    batch_scores[champion][batch_idx] = max(base_score, 0)

                    # Collect debug data if this is the debug champion
                    if debug == champion:
                        counter_list = []
                        for i in range(1, 6):
                            opp_col = f'opp_champ{i}'
                            if opp_col in row and pd.notna(row[opp_col]):
                                if champion in counter_map and row[opp_col] in counter_map[champion]:
                                    counter_list.append(row[opp_col])

                        debug_row = {
                            'champion': row['champion'],
                            'recent_score': champion_scores['recent_score'],
                            'weekly_score': champion_scores['weekly_score'],
                            'meta_score': champion_scores['meta_score'],
                            'base_score': base_score_before_penalty,
                            'final_score': base_score,
                            'counter_penalty': counter_penalty if consider_team_comp else 0,
                            'final_score_actual': feature_dict[row['champion']][idx] if row['champion'] in feature_dict else base_score,
                            'counter_list_debug': counter_list
                        }
                        debug_data.append(debug_row)

            # Update feature_dict with batch results
            for champion in batch_scores:
                if champion not in feature_dict:
                    feature_dict[champion] = np.zeros(total_rows)
                feature_dict[champion][batch_start:batch_end] = batch_scores[champion]

            # Save after each batch with timestamp
            temp_df = pd.DataFrame({
                **{col: feature_dict[col] for col in original_columns},  # Original columns first
                **{champion: feature_dict[champion] for champion in all_champions}  # Then champion columns
            })
            
            batch_save_file = os.path.join("util", "data", f"feature_eng_stats.csv")
            temp_df.to_csv(batch_save_file, index=False)
            print(f"Saved batch progress to {batch_save_file}")

            if debug:
                print(f"{debug} is countered by: {counter_map[debug]}")

        # Process debug data if any
        if debug:
            debug_df = pd.DataFrame(debug_data)
            print("\nDebug Data:")
            print(debug_df)

        # Create final DataFrame
        champion_features = pd.DataFrame(feature_dict)

        # Create the final DataFrame by combining original data with new features
        features = pd.concat([
            merged_player_stats[original_columns],  # Keep all original columns
            champion_features[[col for col in champion_features.columns if col not in original_columns]]  # Only new champion columns
        ], axis=1)

        # Move the champion column to be the first column
        if 'champion' in features.columns:
            columns = ['champion'] + [col for col in features.columns if col != 'champion']
            features = features[columns]
        
        # Print confirmation message
        print(f"Saved features in data frame.")
            
        return features

    except Exception as e:
        print(f"\nError occurred: {str(e)}")
        return None

def create_app_user_training_df(url):
    try:
        #meta_stats = get_meta_stats() 
        #weekly_meta_stats = get_weekly_meta()

        # Input validation
        if not url or not isinstance(url, str):
            raise ValueError("Invalid URL provided")

        # Extract region and username
        match = re.search(r"/summoners/(\w+)/([\w\-]+)", url)
        if not match:
            raise ValueError(f"Could not parse region and username from URL: {url}\n Type(url): {type(url)}")

        region = match.group(1)
        username = match.group(2)
        print(f"Extracted - Region: {region}, Username: {username}")

        # Get recent stats
        print("Fetching recent matches...")
        recent_stats = get_matches_stats(region, username)
        
        # Validate recent_stats
        if recent_stats is None or recent_stats.empty:
            raise ValueError("recent_stats is empty. type(recent_stats): ", type(recent_stats) , "  recent_stats: \n", recent_stats)
        
        #print("Recent matches columns:", recent_stats.columns.tolist())
        
        # Process player_id
        recent_stats['player_id'] = recent_stats['player_id'].str.replace(" #", "-", regex=False)
        #print("Processed player_ids:", recent_stats['player_id'].head())

        # Get player stats
        print("Fetching player stats...")
        player_stats = get_player_stats(region, username)

        # Merge stats
        print("Merging stats...")
        merged_stats = merge_stats(recent_stats, player_stats)
        
        # Validate merged stats
        if merged_stats is None or merged_stats.empty:
            raise ValueError("Failed to merge stats")
        
        #print("Merged stats columns:", merged_stats.columns.tolist())

        # Create features
        print("Creating champion features...")
        training_features = create_champion_features_and_return_df(
            merged_player_stats=merged_stats,
            debug=None,
            consider_team_comp=True,
            test_mode=False
        )
        
        # Final validation
        if training_features is None or training_features.empty:
            raise ValueError("Failed to create training features")
        
        print("Training features created successfully")
        return training_features

    except Exception as e:
        import traceback
        error_trace = traceback.format_exc()
        print(f"Error in create_app_user_training_df:\n{error_trace}")
        raise Exception(f"Failed to create training dataframe: {str(e)}")
        

# ========================================= end of my functions =====================================================

#url = "https://www.op.gg/summoners/euw/Agurin-EUW"
#url = "https://www.op.gg/summoners/euw/Agurin-EUW?queue_type=TOTAL"
#return_value = create_app_user_training_df(url)
#print("type(Return_value):", type(return_value), "\n return value: \n", return_value)