Spaces:
Sleeping
Sleeping
Jimin Park
commited on
Commit
·
78c8d84
1
Parent(s):
5ca7f7e
kermitting soon
Browse files- util/app.py +2 -2
- util/app_training_df_getter.py +3 -3
- util/helper.py +5 -5
util/app.py
CHANGED
@@ -134,10 +134,10 @@ def predict_champion(player_opgg_url, *champions):
|
|
134 |
|
135 |
training_df = convert_df(training_df)
|
136 |
#print("type(training_df): ", type(training_df), "\n")
|
137 |
-
print("check_datatypes(training_df) BEFORE feature eng.
|
138 |
|
139 |
training_df = apply_feature_engineering(training_df)
|
140 |
-
print("check_datatypes(training_df) :", check_datatypes(training_df), "\n")
|
141 |
|
142 |
# Get feature columns
|
143 |
feature_columns = [col for col in training_df.columns
|
|
|
134 |
|
135 |
training_df = convert_df(training_df)
|
136 |
#print("type(training_df): ", type(training_df), "\n")
|
137 |
+
print("check_datatypes(training_df) BEFORE feature eng. :\n", check_datatypes(training_df), "\n")
|
138 |
|
139 |
training_df = apply_feature_engineering(training_df)
|
140 |
+
print("check_datatypes(training_df) AFTER feature eng. \n:", check_datatypes(training_df), "\n")
|
141 |
|
142 |
# Get feature columns
|
143 |
feature_columns = [col for col in training_df.columns
|
util/app_training_df_getter.py
CHANGED
@@ -378,7 +378,7 @@ def create_app_user_training_df(url):
|
|
378 |
if recent_stats is None or recent_stats.empty:
|
379 |
raise ValueError("recent_stats is empty. type(recent_stats): ", type(recent_stats) , " recent_stats: \n", recent_stats)
|
380 |
|
381 |
-
print("Recent matches columns:", recent_stats.columns.tolist())
|
382 |
|
383 |
# Check if player_id exists before trying to process it
|
384 |
#if 'player_id' not in recent_stats.columns:
|
@@ -386,7 +386,7 @@ def create_app_user_training_df(url):
|
|
386 |
|
387 |
# Process player_id
|
388 |
recent_stats['player_id'] = recent_stats['player_id'].str.replace(" #", "-", regex=False)
|
389 |
-
print("Processed player_ids:", recent_stats['player_id'].head())
|
390 |
|
391 |
# Get player stats
|
392 |
print("Fetching player stats...")
|
@@ -406,7 +406,7 @@ def create_app_user_training_df(url):
|
|
406 |
if merged_stats is None or merged_stats.empty:
|
407 |
raise ValueError("Failed to merge stats")
|
408 |
|
409 |
-
print("Merged stats columns:", merged_stats.columns.tolist())
|
410 |
|
411 |
# Create features
|
412 |
print("Creating champion features...")
|
|
|
378 |
if recent_stats is None or recent_stats.empty:
|
379 |
raise ValueError("recent_stats is empty. type(recent_stats): ", type(recent_stats) , " recent_stats: \n", recent_stats)
|
380 |
|
381 |
+
#print("Recent matches columns:", recent_stats.columns.tolist())
|
382 |
|
383 |
# Check if player_id exists before trying to process it
|
384 |
#if 'player_id' not in recent_stats.columns:
|
|
|
386 |
|
387 |
# Process player_id
|
388 |
recent_stats['player_id'] = recent_stats['player_id'].str.replace(" #", "-", regex=False)
|
389 |
+
#print("Processed player_ids:", recent_stats['player_id'].head())
|
390 |
|
391 |
# Get player stats
|
392 |
print("Fetching player stats...")
|
|
|
406 |
if merged_stats is None or merged_stats.empty:
|
407 |
raise ValueError("Failed to merge stats")
|
408 |
|
409 |
+
#print("Merged stats columns:", merged_stats.columns.tolist())
|
410 |
|
411 |
# Create features
|
412 |
print("Creating champion features...")
|
util/helper.py
CHANGED
@@ -902,7 +902,7 @@ def calculate_role_specialization(df):
|
|
902 |
|
903 |
def calculate_champion_loyalty(df):
|
904 |
df = df.copy()
|
905 |
-
print("df.dtypes: \n", df.dtypes, "\n")
|
906 |
|
907 |
|
908 |
def get_loyalty_scores(row):
|
@@ -986,21 +986,21 @@ def calculate_champion_loyalty(df):
|
|
986 |
|
987 |
loyalty_score += combined_weight
|
988 |
|
989 |
-
print("Start calculate confidence score...\n")
|
990 |
# Calculate confidence score (adjusted for 2 champions)
|
991 |
confidence_score = 0
|
992 |
confidence_score += 0.5 if pd.notna(row['most_champ_1']) else 0 # Increased weight for main
|
993 |
confidence_score += 0.2 if pd.notna(row['most_champ_2']) else 0 # Increased weight for second
|
994 |
confidence_score += sum(0.1 for i in range(1, 4) if pd.notna(row[f'season_champ_{i}']))
|
995 |
confidence_score += sum(0.05 for i in range(4, 8) if pd.notna(row[f'season_champ_{i}']))
|
996 |
-
print("...END calculate confidence score\n")
|
997 |
|
998 |
recent_games = sum((row[f'W_{i}'] + row[f'L_{i}']) if pd.notna(row[f'most_champ_{i}']) else 0
|
999 |
for i in range(1, 3)) # Only top 2
|
1000 |
confidence_score += min(0.1, recent_games / 100)
|
1001 |
|
1002 |
-
print(f"loyalty_score, confidence score: [{loyalty_score}], [{confidence_score}] \n")
|
1003 |
-
print("===================== exiting: get_loyalty_scores()===================")
|
1004 |
return {
|
1005 |
'loyalty_score': round(min(loyalty_score, 1.0), 3),
|
1006 |
'confidence_score': round(min(confidence_score, 1.0), 3),
|
|
|
902 |
|
903 |
def calculate_champion_loyalty(df):
|
904 |
df = df.copy()
|
905 |
+
#print("df.dtypes: \n", df.dtypes, "\n")
|
906 |
|
907 |
|
908 |
def get_loyalty_scores(row):
|
|
|
986 |
|
987 |
loyalty_score += combined_weight
|
988 |
|
989 |
+
#print("Start calculate confidence score...\n")
|
990 |
# Calculate confidence score (adjusted for 2 champions)
|
991 |
confidence_score = 0
|
992 |
confidence_score += 0.5 if pd.notna(row['most_champ_1']) else 0 # Increased weight for main
|
993 |
confidence_score += 0.2 if pd.notna(row['most_champ_2']) else 0 # Increased weight for second
|
994 |
confidence_score += sum(0.1 for i in range(1, 4) if pd.notna(row[f'season_champ_{i}']))
|
995 |
confidence_score += sum(0.05 for i in range(4, 8) if pd.notna(row[f'season_champ_{i}']))
|
996 |
+
#print("...END calculate confidence score\n")
|
997 |
|
998 |
recent_games = sum((row[f'W_{i}'] + row[f'L_{i}']) if pd.notna(row[f'most_champ_{i}']) else 0
|
999 |
for i in range(1, 3)) # Only top 2
|
1000 |
confidence_score += min(0.1, recent_games / 100)
|
1001 |
|
1002 |
+
# print(f"loyalty_score, confidence score: [{loyalty_score}], [{confidence_score}] \n")
|
1003 |
+
# print("===================== exiting: get_loyalty_scores()===================")
|
1004 |
return {
|
1005 |
'loyalty_score': round(min(loyalty_score, 1.0), 3),
|
1006 |
'confidence_score': round(min(confidence_score, 1.0), 3),
|