File size: 13,486 Bytes
5e39132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
# app.py
import gradio as gr
import xgboost as xgb
from xgboost import DMatrix
from huggingface_hub import hf_hub_download
from app_training_df_getter import create_app_user_training_df
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from helper import * 
import joblib


# Define champion list for dropdowns
CHAMPIONS = [
    "Aatrox", "Ahri", "Akali", "Akshan", "Alistar", "Amumu", "Anivia", "Annie", "Aphelios", "Ashe",
    "Aurelion Sol", "Azir", "Bard", "Bel'Veth", "Blitzcrank", "Brand", "Braum", "Caitlyn", "Camille",
    "Cassiopeia", "Cho'Gath", "Corki", "Darius", "Diana", "Dr. Mundo", "Draven", "Ekko", "Elise",
    "Evelynn", "Ezreal", "Fiddlesticks", "Fiora", "Fizz", "Galio", "Gangplank", "Garen", "Gnar",
    "Gragas", "Graves", "Gwen", "Hecarim", "Heimerdinger", "Illaoi", "Irelia", "Ivern", "Janna",
    "Jarvan IV", "Jax", "Jayce", "Jhin", "Jinx", "Kai'Sa", "Kalista", "Karma", "Karthus", "Kassadin",
    "Katarina", "Kayle", "Kayn", "Kennen", "Kha'Zix", "Kindred", "Kled", "Kog'Maw", "KSante", "LeBlanc",
    "Lee Sin", "Leona", "Lillia", "Lissandra", "Lucian", "Lulu", "Lux", "Malphite", "Malzahar", "Maokai",
    "Master Yi", "Milio", "Miss Fortune", "Mordekaiser", "Morgana", "Naafiri", "Nami", "Nasus", "Nautilus",
    "Neeko", "Nidalee", "Nilah", "Nocturne", "Nunu & Willump", "Olaf", "Orianna", "Ornn", "Pantheon",
    "Poppy", "Pyke", "Qiyana", "Quinn", "Rakan", "Rammus", "Rek'Sai", "Rell", "Renata Glasc", "Renekton",
    "Rengar", "Riven", "Rumble", "Ryze", "Samira", "Sejuani", "Senna", "Seraphine", "Sett", "Shaco",
    "Shen", "Shyvana", "Singed", "Sion", "Sivir", "Skarner", "Sona", "Soraka", "Swain", "Sylas",
    "Syndra", "Tahm Kench", "Taliyah", "Talon", "Taric", "Teemo", "Thresh", "Tristana", "Trundle",
    "Tryndamere", "Twisted Fate", "Twitch", "Udyr", "Urgot", "Varus", "Vayne", "Veigar", "Vel'Koz",
    "Vex", "Vi", "Viego", "Viktor", "Vladimir", "Volibear", "Warwick", "Wukong", "Xayah", "Xerath",
    "Xin Zhao", "Yasuo", "Yone", "Yorick", "Yuumi", "Zac", "Zed", "Zeri", "Ziggs", "Zilean", "Zoe", "Zyra"
]

# Load model
try:
    model_path = hf_hub_download(
        repo_id="ivwhy/champion-predictor-model",
        filename="champion_predictor.json"
    )
    model = xgb.Booster()
    model.load_model(model_path)
except Exception as e:
    print(f"Error loading model: {e}")
    model = None 

try:
    label_encoder = joblib.load('util/label_encoder.joblib')
    print("Label encoder loaded successfully")
except Exception as e:
    print(f"Error loading label encoder: {e}")
    label_encoder = None

# Initialize champion name encoder
champion_encoder = LabelEncoder()
champion_encoder.fit(CHAMPIONS)


#==================================== Functions =================================================
def get_user_training_df(player_opgg_url):
    try:
        print("========= Inside get_user_training_df(player_opgg_url) ============= \n") 
        #print("player_opgg_url: ", player_opgg_url, "\n type(player_opgg_url): ", type(player_opgg_url), "\n")

        # Add input validation
        if not player_opgg_url or not isinstance(player_opgg_url, str):
            return "Invalid URL provided"

        training_df = create_app_user_training_df(player_opgg_url)
        return training_df
    except Exception as e:

        # Add more detailed error information
        import traceback
        error_trace = traceback.format_exc()
        print(f"Full error trace:\n{error_trace}")
        return f"Error getting training data: {str(e)}"

        #return f"Error getting training data: {e}"

def show_stats(player_opgg_url):
    """Display player statistics and recent matches"""
    if not player_opgg_url:
        return "Please enter a player link to OPGG", None
    
    try:
        training_features = get_user_training_df(player_opgg_url)

        print("training_features: ", training_features, "\n")
        
        if isinstance(training_features, str):  # Error message
            return training_features, None

        wins = training_features['result'].sum()
        losses = len(training_features) - wins
        winrate = f"{(wins / len(training_features)) * 100:.0f}%"
        favorite_champions = (
            training_features['champion']
            .value_counts()
            .head(3)
            .index.tolist()
        )

        stats_html = f"""
        <div style='padding: 20px; background: #f5f5f5; border-radius: 10px;'>
            <h3>Player's Recent Stats</h3>
            <p>Wins: {wins} | Losses: {losses}</p>
            <p>Winrate: {winrate}</p>
            <p>Favorite Champions: {', '.join(favorite_champions)}</p>
        </div>
        """
        
        return stats_html, None
    except Exception as e:
        return f"Error processing stats: {e}. ", None

def predict_champion(player_opgg_url, *champions):
    """Make prediction based on selected champions"""
    if not player_opgg_url or None in champions:
        return "Please fill in all fields"
    
    try:
        if model is None:
            return "Model not loaded properly"
        
        if label_encoder is None:
            return "Label encoder not loaded properly" 
            
        # Get and process the data
        training_df = get_user_training_df(player_opgg_url)
        
        if isinstance(training_df, str):
            return training_df

        training_df = convert_df(training_df)
        #print("type(training_df): ", type(training_df), "\n")
        print("check_datatypes(training_df) BEFORE feature eng:  \n", check_datatypes(training_df), "\n")

        training_df = apply_feature_engineering(training_df)
        print("check_datatypes(training_df) AFTER feature eng: \n", check_datatypes(training_df), "\n")
        
        # Get feature columns
        feature_columns = [col for col in training_df.columns 
                         if col not in ['champion', 'region', 'stratify_label']]
        X = training_df[feature_columns]
        
        # Handle categorical features
        categorical_columns = X.select_dtypes(include=['category']).columns
        X_processed = X.copy()
        
        for col in categorical_columns:
            X_processed[col] = X_processed[col].cat.codes
            
        X_processed = X_processed.astype('float32')
        
        # Create DMatrix and predict
        dtest = DMatrix(X_processed, enable_categorical=True)
        predictions = model.predict(dtest)
        
        # Get prediction indices
        if len(predictions.shape) > 1:
            pred_indices = predictions.argmax(axis=1)
        else:
            pred_indices = predictions.astype(int)
        
        # First get the numeric ID from the original label encoder
        decoded_numeric = label_encoder.inverse_transform(pred_indices)
        
        # Map numeric ID to index in CHAMPIONS list
        # Since your label encoder seems to use champion IDs, we need to map these to list indices
        try:
            # Get the first prediction
            champion_id = int(decoded_numeric[0])
            
            # Print debug information
            print(f"Champion ID from model: {champion_id}")
            
            # Find the closest matching index
            # Note: This assumes champion IDs roughly correspond to their position in the list
            champion_index = min(max(champion_id - 1, 0), len(CHAMPIONS) - 1)
            predicted_champion = CHAMPIONS[champion_index]
            
            print(f"Mapped to champion: {predicted_champion}")
            
            return f"{predicted_champion}"
            
        except Exception as e:
            print(f"Error mapping champion ID: {e}")
            return f"Error: Could not map champion ID {decoded_numeric[0]}"
    
    except Exception as e:
        import traceback
        print(f"Full error trace:\n{traceback.format_exc()}")
        return f"Error making prediction: {e}"

''' current working function!!!!!!
def predict_champion(player_opgg_url, *champions):
    """Make prediction based on selected champions"""

    print("==================== Inside: predict_champion() ===================== \n")
    if not player_opgg_url or None in champions:
        return "Please fill in all fields"
    
    try:
        if model is None:
            return "Model not loaded properly"
        
        if label_encoder is None:
            return "Label encoder not loaded properly"
        
        # Print label encoder information
        print("\nLabel Encoder Information:")
        print("Classes in encoder:", label_encoder.classes_)
        print("Number of classes:", len(label_encoder.classes_))

        # Get and process the data
        training_df = get_user_training_df(player_opgg_url)
        print("training_df retrieved: ", training_df, "\n")
        
        if isinstance(training_df, str):  # Error message
            return training_df

        # Apply necessary transformations
        training_df = convert_df(training_df)
        training_df = apply_feature_engineering(training_df)
        print("training_df converted and feature engineered: ", training_df, "\n")
        
        # Get feature columns (excluding champion and region)
        feature_columns = [col for col in training_df.columns 
                         if col not in ['champion', 'region', 'stratify_label']]
        X = training_df[feature_columns]
        print("Got feature columns X: ", X, "\n")
        
        # Handle categorical features
        categorical_columns = X.select_dtypes(include=['category']).columns
        X_processed = X.copy()
        print("Handled categorical features, X_processed = ", X_processed, "\n")
        
        # Convert categorical columns to numeric
        for col in categorical_columns:
            X_processed[col] = X_processed[col].cat.codes
        print("Converted categorical columns to numeric: ", categorical_columns, "\n")
            
        # Convert to float32
        X_processed = X_processed.astype('float32')
        print("Converted X_processed to float32: ", X_processed, "\n")
        
        # Create DMatrix with categorical feature support
        dtest = DMatrix(X_processed, enable_categorical=True)
        print("Converted to Dmatrix: ", dtest, "\n")
        
        # Make prediction
        print("Starting model prediction...\n")
        predictions = model.predict(dtest)
        print("Model prediction complete\n")

        print("\nPrediction Information:")
        print("Raw predictions shape:", predictions.shape)
        print("Raw predictions:", predictions)
        
        # Get the highest probability prediction
        if len(predictions.shape) > 1:
            pred_indices = predictions.argmax(axis=1)
        else:
            pred_indices = predictions.astype(int)

        print("\nPrediction Indices:")
        print("Indices shape:", pred_indices.shape)
        print("Indices:", pred_indices)

        # Check if indices are within valid range
        print("\nValidation:")
        print("Min index:", pred_indices.min())
        print("Max index:", pred_indices.max())
        print("Valid index range:", 0, len(label_encoder.classes_) - 1)
        # Try to decode predictions

        try:
            decoded_preds = label_encoder.inverse_transform(pred_indices)
            print("\nDecoded Predictions:")
            print("Type:", type(decoded_preds))
            print("Value:", decoded_preds) 
            print("==================== Exiting: predict_champion()===================\n")
            return f"Predicted champion: {decoded_preds[0]}"
        except Exception as e:
            print(f"\nError during decoding: {e}")
            # Fallback: try to directly index into classes
            try:
                champion = label_encoder.classes_[int(pred_indices[0])]
                return f"Predicted champion: {champion}"
            except Exception as e2:
                print(f"Fallback error: {e2}")
                return f"Error decoding prediction: {pred_indices[0]}"
    
    except Exception as e:
        import traceback
        print(f"Full error trace:\n{traceback.format_exc()}")
        return f"Error making prediction: {e}"
'''

# Define your interface
with gr.Blocks() as demo:
    gr.Markdown("# League of Legends Champion Prediction")
    
    with gr.Row():
        player_opgg_url = gr.Textbox(label="OPGG Player URL")
        show_button = gr.Button("Show Player Stats")
    
    with gr.Row():
        stats_output = gr.HTML(label="Player Statistics")
        recent_matches = gr.HTML(label="Recent Matches")
    
    with gr.Row():
        champion_dropdowns = [
            gr.Dropdown(choices=CHAMPIONS, label=f"Champion {i+1}")
            for i in range(9)
        ]
    
    with gr.Row():
        predict_button = gr.Button("Predict")
        prediction_output = gr.Text(label="Prediction")
        
    # Set up event handlers
    show_button.click(
        fn=show_stats,
        inputs=[player_opgg_url],
        outputs=[stats_output, recent_matches]
    )
    
    predict_button.click(
        fn=predict_champion,
        inputs=[player_opgg_url] + champion_dropdowns,
        outputs=prediction_output
    )

# Optional: Save the champion encoder for future use
joblib.dump(champion_encoder, 'champion_encoder.joblib')
# Enable queuing
demo.launch(debug=True)

# For local testing
if __name__ == "__main__":
    demo.launch()