root
ss
c71ed9b
raw
history blame
43.6 kB
import streamlit as st
import pandas as pd
import numpy as np
import torch
import nltk
import os
import tempfile
import base64
from rank_bm25 import BM25Okapi
from sentence_transformers import SentenceTransformer, CrossEncoder
from nltk.tokenize import word_tokenize
import pdfplumber
import PyPDF2
from docx import Document
import csv
from datasets import load_dataset
import gc
from transformers import AutoModelForCausalLM, AutoTokenizer
import time
import faiss
import re
# Download NLTK resources
try:
nltk.data.find('tokenizers/punkt')
except LookupError:
nltk.download('punkt')
# Set page configuration
st.set_page_config(
page_title="AI Resume Screener",
page_icon="🎯",
layout="wide",
initial_sidebar_state="expanded"
)
# --- Global Device and Model Loading Section ---
# Initialize session state keys for all models, their loading status/errors, and app data
keys_to_initialize = {
'embedding_model': None, 'embedding_model_error': None,
'cross_encoder': None, 'cross_encoder_error': None,
'qwen3_1_7b_tokenizer': None, 'qwen3_1_7b_tokenizer_error': None,
'qwen3_1_7b_model': None, 'qwen3_1_7b_model_error': None,
'results': [], 'resume_texts': [], 'file_names': [], 'current_job_description': ""
# Add any other app-specific session state keys here if needed
}
for key, default_value in keys_to_initialize.items():
if key not in st.session_state:
st.session_state[key] = default_value
# Load Embedding Model (BAAI/bge-large-en-v1.5)
if st.session_state.embedding_model is None and st.session_state.embedding_model_error is None:
print("[Global Init] Attempting to load Embedding Model (BAAI/bge-large-en-v1.5) with device_map='auto'...")
try:
st.session_state.embedding_model = SentenceTransformer(
'BAAI/bge-large-en-v1.5',
device_map="auto"
)
print(f"[Global Init] Embedding Model (BAAI/bge-large-en-v1.5) LOADED with device_map='auto'.")
except Exception as e:
if "device_map" in str(e).lower() and "unexpected keyword argument" in str(e).lower():
print("⚠️ [Global Init] device_map='auto' not supported for SentenceTransformer. Falling back to default device handling.")
try:
st.session_state.embedding_model = SentenceTransformer('BAAI/bge-large-en-v1.5')
print(f"[Global Init] Embedding Model (BAAI/bge-large-en-v1.5) LOADED (fallback device handling).")
except Exception as e_fallback:
error_msg = f"Failed to load Embedding Model (fallback): {str(e_fallback)}"
print(f"❌ [Global Init] {error_msg}")
st.session_state.embedding_model_error = error_msg
else:
error_msg = f"Failed to load Embedding Model: {str(e)}"
print(f"❌ [Global Init] {error_msg}")
st.session_state.embedding_model_error = error_msg
# Load Cross-Encoder Model (ms-marco-MiniLM-L6-v2)
if st.session_state.cross_encoder is None and st.session_state.cross_encoder_error is None:
print("[Global Init] Attempting to load Cross-Encoder Model (ms-marco-MiniLM-L6-v2) with device_map='auto'...")
try:
st.session_state.cross_encoder = CrossEncoder(
'cross-encoder/ms-marco-MiniLM-L6-v2',
device_map="auto"
)
print(f"[Global Init] Cross-Encoder Model (ms-marco-MiniLM-L6-v2) LOADED with device_map='auto'.")
except Exception as e:
if "device_map" in str(e).lower() and "unexpected keyword argument" in str(e).lower():
print("⚠️ [Global Init] device_map='auto' not supported for CrossEncoder. Falling back to default device handling.")
try:
st.session_state.cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L6-v2')
print(f"[Global Init] Cross-Encoder Model (ms-marco-MiniLM-L6-v2) LOADED (fallback device handling).")
except Exception as e_fallback:
error_msg = f"Failed to load Cross-Encoder Model (fallback): {str(e_fallback)}"
print(f"❌ [Global Init] {error_msg}")
st.session_state.cross_encoder_error = error_msg
else:
error_msg = f"Failed to load Cross-Encoder Model: {str(e)}"
print(f"❌ [Global Init] {error_msg}")
st.session_state.cross_encoder_error = error_msg
# Load Qwen3-1.7B Tokenizer
if st.session_state.qwen3_1_7b_tokenizer is None and st.session_state.qwen3_1_7b_tokenizer_error is None:
print("[Global Init] Loading Qwen3-1.7B Tokenizer...")
try:
st.session_state.qwen3_1_7b_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-1.7B")
print("[Global Init] Qwen3-1.7B Tokenizer Loaded.")
except Exception as e:
error_msg = f"Failed to load Qwen3-1.7B Tokenizer: {str(e)}"
print(f"❌ [Global Init] {error_msg}")
st.session_state.qwen3_1_7b_tokenizer_error = error_msg
# Load Qwen3-1.7B Model
if st.session_state.qwen3_1_7b_model is None and st.session_state.qwen3_1_7b_model_error is None:
print("[Global Init] Loading Qwen3-1.7B Model (attempting with device_map='auto')...")
try:
st.session_state.qwen3_1_7b_model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen3-1.7B",
torch_dtype="auto",
device_map="auto",
trust_remote_code=True # if required by this specific model
)
print("[Global Init] Qwen3-1.7B Model Loaded with device_map='auto'.")
except Exception as e_dev_map:
print(f"⚠️ [Global Init] Failed to load Qwen3-1.7B with device_map='auto': {str(e_dev_map)}")
print("[Global Init] Retrying Qwen3-1.7B load without device_map (will use default single device)...")
try:
st.session_state.qwen3_1_7b_model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen3-1.7B",
torch_dtype="auto",
# No device_map here, let Hugging Face decide or use CUDA if available
trust_remote_code=True # if required
)
print("[Global Init] Qwen3-1.7B Model Loaded (fallback device handling).")
except Exception as e_fallback:
error_msg = f"Failed to load Qwen3-1.7B Model (fallback): {str(e_fallback)}"
print(f"❌ [Global Init] {error_msg}")
st.session_state.qwen3_1_7b_model_error = error_msg
# --- End of Global Model Loading Section ---
# --- Class Definitions and Helper Functions ---
def generate_qwen3_response(prompt, tokenizer, model, max_new_tokens=200):
# ... (implementation of generate_qwen3_response)
messages = [{"role": "user", "content": prompt}]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True # As per Qwen3-1.7B docs for thinking mode
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=max_new_tokens
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
response = tokenizer.decode(output_ids, skip_special_tokens=True).strip("\n")
return response
class ResumeScreener: # Ensure this class definition is BEFORE it's instantiated
def __init__(self):
# ... (init logic as before, referencing st.session_state for models)
print("[ResumeScreener] Initializing with references to globally loaded models...")
self.embedding_model = st.session_state.get('embedding_model')
self.cross_encoder = st.session_state.get('cross_encoder')
if self.embedding_model:
print("[ResumeScreener] Embedding model reference set.")
else:
print("[ResumeScreener] Embedding model not available (check loading errors).")
if self.cross_encoder:
print("[ResumeScreener] Cross-encoder model reference set.")
else:
print("[ResumeScreener] Cross-encoder model not available (check loading errors).")
print("[ResumeScreener] Initialization complete.")
# ... (all other methods of ResumeScreener: extract_text_from_file, get_embedding,
# calculate_bm25_scores, advanced_pipeline_ranking, faiss_recall, cross_encoder_rerank,
# add_bm25_scores, add_intent_scores, analyze_intent, calculate_final_scores, extract_skills)
# Make sure all methods are correctly indented within the class
def extract_text_from_file(self, file_path, file_type):
# ... (implementation)
try:
if file_type == "pdf":
with open(file_path, 'rb') as file:
with pdfplumber.open(file) as pdf:
text = ""
for page in pdf.pages:
text += page.extract_text() or ""
if not text.strip():
file.seek(0)
reader = PyPDF2.PdfReader(file)
text = ""
for page_num in range(len(reader.pages)):
text += reader.pages[page_num].extract_text() or ""
return text
elif file_type == "docx":
doc = Document(file_path)
return " ".join([paragraph.text for paragraph in doc.paragraphs])
elif file_type == "txt":
with open(file_path, 'r', encoding='utf-8') as file:
return file.read()
elif file_type == "csv":
with open(file_path, 'r', encoding='utf-8') as file:
csv_reader = csv.reader(file)
return " ".join([" ".join(row) for row in csv_reader])
except Exception as e:
st.error(f"Error extracting text from {file_path}: {str(e)}")
return ""
def get_embedding(self, text):
if self.embedding_model is None:
st.error("Embedding model is not available!")
return np.zeros(1024)
try:
if len(text) < 500:
text = "Represent this sentence for searching relevant passages: " + text
text = text[:8192] if text else ""
embedding = self.embedding_model.encode(text, convert_to_numpy=True, normalize_embeddings=True)
return embedding
except Exception as e:
st.error(f"Error generating embedding: {str(e)}")
return np.zeros(1024)
def calculate_bm25_scores(self, resume_texts, job_description):
try:
job_tokens = word_tokenize(job_description.lower())
corpus = [word_tokenize(text.lower()) for text in resume_texts if text and text.strip()]
if not corpus:
return [0.0] * len(resume_texts)
bm25 = BM25Okapi(corpus)
scores = bm25.get_scores(job_tokens)
return scores.tolist()
except Exception as e:
st.error(f"Error calculating BM25 scores: {str(e)}")
return [0.0] * len(resume_texts)
def advanced_pipeline_ranking(self, resume_texts, job_description):
print("[Pipeline] Advanced Pipeline Ranking started.")
if not resume_texts:
return []
st.info("πŸ” Stage 1: FAISS Recall - Finding top candidates...")
top_50_indices = self.faiss_recall(resume_texts, job_description, top_k=50)
st.info("🎯 Stage 2: Cross-Encoder Re-ranking - Selecting top candidates...")
top_20_results = self.cross_encoder_rerank(resume_texts, job_description, top_50_indices, top_k=20)
st.info("πŸ”€ Stage 3: BM25 Keyword Matching...")
top_20_with_bm25 = self.add_bm25_scores(resume_texts, job_description, top_20_results)
st.info("πŸ€– Stage 4: LLM Intent Analysis (Qwen3-1.7B)...")
top_20_with_intent = self.add_intent_scores(resume_texts, job_description, top_20_with_bm25)
st.info("πŸ† Stage 5: Final Combined Ranking...")
final_results = self.calculate_final_scores(top_20_with_intent)
print("[Pipeline] Advanced Pipeline Ranking finished.")
return final_results[:st.session_state.get('top_k', 5)]
def faiss_recall(self, resume_texts, job_description, top_k=50):
print("[faiss_recall] Method started.")
st.text("FAISS Recall: Embedding job description...")
job_embedding = self.get_embedding(job_description)
st.text(f"FAISS Recall: Embedding {len(resume_texts)} resumes...")
resume_embeddings = []
progress_bar = st.progress(0)
for i, text in enumerate(resume_texts):
if text:
embedding = self.embedding_model.encode(text[:8192], convert_to_numpy=True, normalize_embeddings=True)
resume_embeddings.append(embedding)
else:
resume_embeddings.append(np.zeros(1024))
progress_bar.progress((i + 1) / len(resume_texts))
progress_bar.empty()
resume_embeddings_np = np.array(resume_embeddings).astype('float32') # Renamed variable
if resume_embeddings_np.ndim == 1: # Handle case of single resume
resume_embeddings_np = resume_embeddings_np.reshape(1, -1)
if resume_embeddings_np.size == 0:
print("[faiss_recall] No resume embeddings to add to FAISS index.")
return [] # Or handle error appropriately
dimension = resume_embeddings_np.shape[1]
index = faiss.IndexFlatIP(dimension)
index.add(resume_embeddings_np)
job_embedding_np = job_embedding.reshape(1, -1).astype('float32') # Renamed variable
scores, indices = index.search(job_embedding_np, min(top_k, len(resume_texts)))
return indices[0].tolist()
def cross_encoder_rerank(self, resume_texts, job_description, top_50_indices, top_k=20):
print("[cross_encoder_rerank] Method started.")
if not self.cross_encoder:
st.error("Cross-encoder model is not available!")
return [(idx, 0.0) for idx in top_50_indices[:top_k]]
pairs = []
valid_indices = []
for idx in top_50_indices:
if idx < len(resume_texts) and resume_texts[idx]:
job_snippet = job_description[:512]
resume_snippet = resume_texts[idx][:512]
pairs.append([job_snippet, resume_snippet])
valid_indices.append(idx)
if not pairs:
return [(idx, 0.0) for idx in top_50_indices[:top_k]]
st.text(f"Cross-Encoder: Preparing {len(pairs)} pairs for re-ranking...")
scores = []
batch_size = 8
progress_bar = st.progress(0)
for i in range(0, len(pairs), batch_size):
batch = pairs[i:i+batch_size]
batch_scores = self.cross_encoder.predict(batch)
scores.extend(batch_scores)
progress_bar.progress(min(1.0, (i + batch_size) / len(pairs)))
progress_bar.empty()
indexed_scores = list(zip(valid_indices, scores))
indexed_scores.sort(key=lambda x: x[1], reverse=True)
return indexed_scores[:top_k]
def add_bm25_scores(self, resume_texts, job_description, top_20_results):
st.text("BM25: Calculating keyword scores...")
top_20_texts = [resume_texts[idx] for idx, _ in top_20_results]
bm25_scores_raw = self.calculate_bm25_scores(top_20_texts, job_description)
if bm25_scores_raw and max(bm25_scores_raw) > 0:
max_bm25, min_bm25 = max(bm25_scores_raw), min(bm25_scores_raw)
if max_bm25 > min_bm25:
normalized_bm25 = [0.1 + 0.1 * (s - min_bm25) / (max_bm25 - min_bm25) for s in bm25_scores_raw]
else:
normalized_bm25 = [0.15] * len(bm25_scores_raw)
else:
normalized_bm25 = [0.15] * len(top_20_results)
results_with_bm25 = []
for i, (idx, cross_score) in enumerate(top_20_results):
results_with_bm25.append((idx, cross_score, normalized_bm25[i] if i < len(normalized_bm25) else 0.15))
return results_with_bm25
def add_intent_scores(self, resume_texts, job_description, top_20_with_bm25):
st.text(f"LLM Intent: Analyzing intent for {len(top_20_with_bm25)} candidates (Qwen3-1.7B)...")
results_with_intent = []
progress_bar = st.progress(0)
for i, (idx, cross_score, bm25_score) in enumerate(top_20_with_bm25):
intent_score = self.analyze_intent(resume_texts[idx], job_description)
results_with_intent.append((idx, cross_score, bm25_score, intent_score))
progress_bar.progress((i + 1) / len(top_20_with_bm25))
progress_bar.empty()
return results_with_intent
def analyze_intent(self, resume_text, job_description):
print(f"[analyze_intent] Analyzing intent for one resume (Qwen3-1.7B)...")
st.text("LLM Intent: Analyzing intent (Qwen3-1.7B)...")
try:
resume_snippet = resume_text[:15000]
job_snippet = job_description[:5000]
prompt = f\"\"\"You are given a job description and a candidate's resume... (rest of prompt)\"\"\" # Ensure f-string is correct
# ... (rest of analyze_intent, using st.session_state.qwen3_1_7b_tokenizer and _model)
response_text = generate_qwen3_response(
prompt,
st.session_state.qwen3_1_7b_tokenizer,
st.session_state.qwen3_1_7b_model,
max_new_tokens=20000
)
# ... (parsing logic for response_text) ...
thinking_content = "No detailed thought process extracted."
intent_decision_part = response_text
think_start_tag = "<think>"
think_end_tag = "</think>"
start_index = response_text.find(think_start_tag)
end_index = response_text.rfind(think_end_tag)
if start_index != -1 and end_index != -1 and start_index < end_index:
thinking_content = response_text[start_index + len(think_start_tag):end_index].strip()
intent_decision_part = response_text[end_index + len(think_end_tag):].strip()
response_lower = intent_decision_part.lower()
intent_score = 0.1
if 'intent: yes' in response_lower or 'intent:yes' in response_lower:
intent_score = 0.3
elif 'intent: no' in response_lower or 'intent:no' in response_lower:
intent_score = 0.0
return intent_score
except Exception as e:
st.warning(f"Error analyzing intent with Qwen3-1.7B: {str(e)}")
return 0.1
def calculate_final_scores(self, results_with_all_scores):
final_results = []
for idx, cross_score, bm25_score, intent_score in results_with_all_scores:
normalized_cross = max(0, min(1, cross_score))
final_score = normalized_cross + bm25_score + intent_score
final_results.append({
'index': idx, 'cross_encoder_score': normalized_cross,
'bm25_score': bm25_score, 'intent_score': intent_score,
'final_score': final_score
})
final_results.sort(key=lambda x: x['final_score'], reverse=True)
return final_results
def extract_skills(self, text, job_description):
# ... (implementation)
if not text: return []
common_skills = ["python", "java", "javascript", "react", "angular", "vue", "node.js", "express", "django", "flask", "spring", "sql", "nosql", "html", "css", "aws", "azure", "gcp", "docker", "kubernetes", "jenkins", "git", "github", "agile", "scrum", "jira", "ci/cd", "devops", "microservices", "rest", "api", "machine learning", "deep learning", "data science", "artificial intelligence", "tensorflow", "pytorch", "keras", "scikit-learn", "pandas", "numpy", "matplotlib", "seaborn", "jupyter", "r", "sas", "spss", "tableau", "powerbi", "excel", "mysql", "postgresql", "mongodb", "redis", "elasticsearch", "kafka", "rabbitmq", "spark", "hadoop", "hive", "airflow", "linux", "unix"]
job_words = set(word.lower() for word in word_tokenize(job_description) if len(word) > 2)
found_skills = []
text_lower = text.lower()
for skill in common_skills:
if skill in text_lower and any(skill in job_word for job_word in job_words):
found_skills.append(skill)
for word in job_words:
if len(word) > 3 and word in text_lower and word not in found_skills and word not in ['with', 'have', 'that', 'this', 'from', 'what', 'when', 'where']:
found_skills.append(word)
return list(set(found_skills))[:15]
def create_download_link(df, filename="resume_screening_results.csv"):
# ... (implementation)
csv = df.to_csv(index=False)
b64 = base64.b64encode(csv.encode()).decode()
return f'<a href="data:file/csv;base64,{b64}" download="{filename}" class="download-btn">πŸ“₯ Download Results CSV</a>'
# --- Sidebar Configuration (Must be after global model loading and class defs if it uses them) ---
with st.sidebar:
st.title("βš™οΈ Configuration")
# Advanced options
st.subheader("Advanced Options")
# Ensure top_k is in session_state if it's used by advanced_pipeline_ranking before button press
if 'top_k' not in st.session_state:
st.session_state.top_k = 5 # Default value
st.session_state.top_k = st.selectbox("Number of results to display", [1,2,3,4,5], index=st.session_state.top_k-1, key="top_k_selector")
# LLM Settings
st.subheader("LLM Settings")
# use_llm_explanations = st.checkbox("Generate AI Explanations", value=True) # This was removed earlier
# if use_llm_explanations:
# hf_token = st.text_input("Hugging Face Token (optional)", type="password",
# help="Enter your HF token for better rate limits")
st.markdown("---")
st.markdown("### πŸ€– Advanced Pipeline")
st.markdown("- **Stage 1**: FAISS Recall (Top 50)")
st.markdown("- **Stage 2**: Cross-Encoder Re-ranking (Top 20)")
st.markdown("- **Stage 3**: BM25 Keyword Matching")
st.markdown("- **Stage 4**: LLM Intent Analysis (Qwen3-1.7B)")
st.markdown("- **Final**: Combined Scoring") # Updated this line
st.markdown("### πŸ“Š Models Used")
st.markdown("- **Embedding**: BAAI/bge-large-en-v1.5")
st.markdown("- **Cross-Encoder**: ms-marco-MiniLM-L6-v2")
st.markdown("- **LLM**: Qwen/Qwen3-1.7B")
st.markdown("### πŸ“ˆ Scoring Formula")
st.markdown("**Final Score = Cross-Encoder (0-1) + BM25 (0.1-0.2) + Intent (0-0.3)**")
# --- Main App Interface (Must be after global model loading and class defs) ---
st.title("🎯 AI-Powered Resume Screener")
# ... (Model Loading Status display as before)
# ...
st.markdown("*Find the perfect candidates using BAAI/bge-large-en-v1.5 embeddings and Qwen3-1.7B for intent analysis*")
st.subheader("πŸ€– Model Loading Status")
col1, col2 = st.columns(2)
with col1:
if st.session_state.get('embedding_model_error'):
st.error(f"Embedding Model: {st.session_state.embedding_model_error}")
elif st.session_state.get('embedding_model'):
st.success("βœ… Embedding Model (BAAI/bge-large-en-v1.5) loaded.")
else:
st.warning("⏳ Embedding Model loading or not found (check console).")
if st.session_state.get('cross_encoder_error'):
st.error(f"Cross-Encoder Model: {st.session_state.cross_encoder_error}")
elif st.session_state.get('cross_encoder'):
st.success("βœ… Cross-Encoder Model (ms-marco-MiniLM-L6-v2) loaded.")
else:
st.warning("⏳ Cross-Encoder Model loading or not found (check console).")
with col2:
if st.session_state.get('qwen3_1_7b_tokenizer_error'):
st.error(f"Qwen3-1.7B Tokenizer: {st.session_state.qwen3_1_7b_tokenizer_error}")
elif st.session_state.get('qwen3_1_7b_tokenizer'):
st.success("βœ… Qwen3-1.7B Tokenizer loaded.")
else:
st.warning("⏳ Qwen3-1.7B Tokenizer loading or not found (check console).")
if st.session_state.get('qwen3_1_7b_model_error'):
st.error(f"Qwen3-1.7B Model: {st.session_state.qwen3_1_7b_model_error}")
elif st.session_state.get('qwen3_1_7b_model'):
st.success("βœ… Qwen3-1.7B Model loaded.")
else:
st.warning("⏳ Qwen3-1.7B Model loading or not found (check console).")
st.markdown("---")
# Initialize screener (This line was causing NameError, ensure class is defined above)
screener = ResumeScreener()
# Job Description Input
st.header("πŸ“ Step 1: Enter Job Description")
job_description = st.text_area(
"Enter the complete job description or requirements:",
height=150,
placeholder="Paste the job description here, including required skills, experience, and qualifications..."
)
# Resume Input Options
st.header("πŸ“„ Step 2: Upload Resumes")
# Show loaded resumes indicator
if st.session_state.resume_texts:
col1, col2 = st.columns([3, 1])
with col1:
st.info(f"πŸ“š {len(st.session_state.resume_texts)} resumes loaded and ready for analysis")
with col2:
if st.button("πŸ—‘οΈ Clear Resumes", type="secondary", help="Clear all loaded resumes to start fresh"):
st.session_state.resume_texts = []
st.session_state.file_names = []
st.session_state.results = []
st.session_state.current_job_description = ""
st.rerun()
input_method = st.radio(
"Choose input method:",
["πŸ“ Upload Files", "πŸ—‚οΈ Load from CSV Dataset", "πŸ”— Load from Hugging Face Dataset"]
)
if input_method == "πŸ“ Upload Files":
uploaded_files = st.file_uploader(
"Upload resume files",
type=["pdf", "docx", "txt"],
accept_multiple_files=True,
help="Supported formats: PDF, DOCX, TXT"
)
if uploaded_files:
with st.spinner(f"πŸ”„ Processing {len(uploaded_files)} files..."):
resume_texts = []
file_names = []
for file in uploaded_files:
file_type = file.name.split('.')[-1].lower()
with tempfile.NamedTemporaryFile(delete=False, suffix=f'.{file_type}') as tmp_file:
tmp_file.write(file.getvalue())
tmp_path = tmp_file.name
text = screener.extract_text_from_file(tmp_path, file_type)
if text.strip():
resume_texts.append(text)
file_names.append(file.name)
os.unlink(tmp_path)
st.session_state.resume_texts = resume_texts
st.session_state.file_names = file_names
if resume_texts:
st.success(f"βœ… Successfully processed {len(resume_texts)} resumes")
elif input_method == "πŸ—‚οΈ Load from CSV Dataset":
csv_file = st.file_uploader("Upload CSV file with resume data", type=["csv"])
if csv_file:
try:
df = pd.read_csv(csv_file)
st.write("**CSV Preview:**")
st.dataframe(df.head())
text_column = st.selectbox(
"Select column containing resume text:",
df.columns.tolist()
)
name_column = st.selectbox(
"Select column for candidate names/IDs (optional):",
["Use Index"] + df.columns.tolist()
)
if st.button("πŸš€ Process CSV Data"):
with st.spinner("πŸ”„ Processing CSV data..."):
resume_texts = []
file_names = []
for idx, row in df.iterrows():
text = str(row[text_column])
if text and text.strip() and text.lower() != 'nan':
resume_texts.append(text)
if name_column == "Use Index":
file_names.append(f"Resume_{idx}")
else:
file_names.append(str(row[name_column]))
st.session_state.resume_texts = resume_texts
st.session_state.file_names = file_names
if resume_texts:
st.success(f"βœ… Successfully loaded {len(resume_texts)} resumes from CSV")
except Exception as e:
st.error(f"❌ Error processing CSV: {str(e)}")
elif input_method == "πŸ”— Load from Hugging Face Dataset":
st.markdown("**Popular Resume Datasets:**")
st.markdown("- `ahmedheakl/resume-atlas`")
st.markdown("- `InferenceFly/Resume-Dataset`")
col1, col2 = st.columns([2, 1])
with col1:
dataset_name = st.text_input(
"Dataset name:",
value="ahmedheakl/resume-atlas",
help="Enter Hugging Face dataset name"
)
with col2:
dataset_split = st.selectbox("Split:", ["train", "test", "validation"], index=0)
if st.button("πŸ”— Load from Hugging Face"):
try:
with st.spinner(f"πŸ”„ Loading {dataset_name}..."):
dataset = load_dataset(dataset_name, split=dataset_split)
st.success(f"βœ… Loaded dataset with {len(dataset)} entries")
st.write("**Dataset Preview:**")
preview_df = pd.DataFrame(dataset[:5])
st.dataframe(preview_df)
text_column = st.selectbox(
"Select column with resume text:",
dataset.column_names,
index=dataset.column_names.index('resume_text') if 'resume_text' in dataset.column_names else 0
)
category_column = None
if 'category' in dataset.column_names:
categories = list(set(dataset['category']))
category_column = st.selectbox(
"Filter by category (optional):",
["All"] + categories
)
max_samples = st.slider("Maximum samples to load:", 10, min(1000, len(dataset)), 100)
if st.button("πŸš€ Process Dataset"):
with st.spinner("πŸ”„ Processing dataset..."):
resume_texts = []
file_names = []
filtered_dataset = dataset
if category_column and category_column != "All":
filtered_dataset = dataset.filter(lambda x: x['category'] == category_column)
sample_indices = list(range(min(max_samples, len(filtered_dataset))))
for idx in sample_indices:
item = filtered_dataset[idx]
text = str(item[text_column])
if text and text.strip() and text.lower() != 'nan':
resume_texts.append(text)
if 'id' in item:
file_names.append(f"Resume_{item['id']}")
else:
file_names.append(f"Resume_{idx}")
st.session_state.resume_texts = resume_texts
st.session_state.file_names = file_names
if resume_texts:
st.success(f"βœ… Successfully loaded {len(resume_texts)} resumes")
except Exception as e:
st.error(f"❌ Error loading dataset: {str(e)}")
# Processing and Results
st.header("πŸ” Step 3: Analyze Resumes")
# First button: Find top K candidates (fast ranking)
col1, col2 = st.columns([1, 1])
with col1:
if st.button("πŸš€ Advanced Pipeline Analysis",
disabled=not (job_description and st.session_state.resume_texts and
st.session_state.get('embedding_model') and
st.session_state.get('cross_encoder') and
st.session_state.get('qwen3_1_7b_model') and
st.session_state.get('qwen3_1_7b_tokenizer')),
type="primary",
help="Run the complete 5-stage advanced pipeline"):
print("--- Advanced Pipeline Analysis Button Clicked ---")
if len(st.session_state.resume_texts) == 0:
st.error("❌ Please upload resumes first!")
elif not job_description.strip():
st.error("❌ Please enter a job description!")
else:
print("[UI Button] Pre-checks passed. Starting spinner and pipeline.")
with st.spinner("πŸš€ Running Advanced Pipeline Analysis..."):
st.text("Pipeline Initiated: Starting advanced analysis...")
try:
# Run the advanced pipeline
pipeline_results = screener.advanced_pipeline_ranking(
st.session_state.resume_texts, job_description
)
# Prepare results for display
results = []
for rank, result_data in enumerate(pipeline_results, 1):
idx = result_data['index']
name = st.session_state.file_names[idx]
text = st.session_state.resume_texts[idx]
# Extract skills
skills = screener.extract_skills(text, job_description)
results.append({
'rank': rank,
'name': name,
'final_score': result_data['final_score'],
'cross_encoder_score': result_data['cross_encoder_score'],
'bm25_score': result_data['bm25_score'],
'intent_score': result_data['intent_score'],
'skills': skills,
'text': text,
'text_preview': text[:500] + "..." if len(text) > 500 else text
})
# Store in session state
st.session_state.results = results
st.session_state.current_job_description = job_description
st.success(f"πŸš€ Advanced pipeline complete! Found top {len(st.session_state.results)} candidates.")
st.text("Displaying Top Candidates...")
except Exception as e:
st.error(f"❌ Error during analysis: {str(e)}")
# Display Results
if st.session_state.results:
st.header("πŸ† Top Candidates")
# Create tabs for different views
tab1, tab2, tab3 = st.tabs(["πŸ“Š Summary", "πŸ“‹ Detailed Analysis", "πŸ“ˆ Visualizations"])
with tab1:
# Create summary dataframe with new scoring system
summary_data = []
for result in st.session_state.results:
# Map intent score to text
intent_text = "Yes" if result['intent_score'] == 0.3 else "Maybe" if result['intent_score'] == 0.1 else "No"
summary_data.append({
"Rank": result['rank'],
"Candidate": result['name'],
"Final Score": f"{result['final_score']:.2f}",
"Cross-Encoder": f"{result['cross_encoder_score']:.2f}",
"BM25": f"{result['bm25_score']:.2f}",
"Intent": f"{intent_text} ({result['intent_score']:.1f})",
"Top Skills": ", ".join(result['skills'][:5])
})
summary_df = pd.DataFrame(summary_data)
# Style the dataframe
def color_scores(val):
if isinstance(val, str) and any(char.isdigit() for char in val):
try:
# Extract numeric value
numeric_val = float(''.join(c for c in val if c.isdigit() or c == '.'))
if 'Final Score' in val or numeric_val >= 1.0:
if numeric_val >= 1.2:
return 'background-color: #d4edda'
elif numeric_val >= 1.0:
return 'background-color: #fff3cd'
else:
return 'background-color: #f8d7da'
else:
if numeric_val >= 0.7:
return 'background-color: #d4edda'
elif numeric_val >= 0.5:
return 'background-color: #fff3cd'
else:
return 'background-color: #f8d7da'
except:
pass
return ''
styled_df = summary_df.style.applymap(color_scores, subset=['Final Score', 'Cross-Encoder', 'BM25'])
st.dataframe(styled_df, use_container_width=True)
# Download link
detailed_data = []
for result in st.session_state.results:
intent_text = "Yes" if result['intent_score'] == 0.3 else "Maybe" if result['intent_score'] == 0.1 else "No"
detailed_data.append({
"Rank": result['rank'],
"Candidate": result['name'],
"Final_Score": result['final_score'],
"Cross_Encoder_Score": result['cross_encoder_score'],
"BM25_Score": result['bm25_score'],
"Intent_Score": result['intent_score'],
"Intent_Analysis": intent_text,
"Skills": "; ".join(result['skills']),
"Resume_Preview": result['text_preview']
})
download_df = pd.DataFrame(detailed_data)
st.markdown(create_download_link(download_df), unsafe_allow_html=True)
with tab2:
# Detailed results with new scoring breakdown
for result in st.session_state.results:
intent_text = "Yes" if result['intent_score'] == 0.3 else "Maybe" if result['intent_score'] == 0.1 else "No"
with st.expander(f"#{result['rank']}: {result['name']} (Final Score: {result['final_score']:.2f})"):
col1, col2 = st.columns([1, 2])
with col1:
st.metric("πŸ† Final Score", f"{result['final_score']:.2f}")
st.write("**πŸ“Š Score Breakdown:**")
st.metric("🎯 Cross-Encoder", f"{result['cross_encoder_score']:.2f}", help="Semantic relevance (0-1)")
st.metric("πŸ”€ BM25 Keywords", f"{result['bm25_score']:.2f}", help="Keyword matching (0.1-0.2)")
st.metric("πŸ€– Intent Analysis", f"{intent_text} ({result['intent_score']:.1f})", help="Job seeking likelihood (0-0.3)")
st.write("**🎯 Matching Skills:**")
skills_per_column = 5
skill_cols = st.columns(2)
for idx, skill in enumerate(result['skills'][:10]):
with skill_cols[idx % 2]:
st.write(f"β€’ {skill}")
with col2:
st.write("**πŸ“„ Resume Preview:**")
st.text_area("", result['text_preview'], height=200, disabled=True, key=f"preview_{result['rank']}")
with tab3:
# Score visualization
if len(st.session_state.results) > 1:
# Bar chart
st.subheader("Score Comparison")
chart_data = pd.DataFrame({
'Candidate': [r['name'][:20] + '...' if len(r['name']) > 20 else r['name']
for r in st.session_state.results],
'Final Score': [r['final_score'] for r in st.session_state.results],
'Cross-Encoder': [r['cross_encoder_score'] for r in st.session_state.results],
'BM25': [r['bm25_score'] for r in st.session_state.results],
'Intent': [r['intent_score'] for r in st.session_state.results]
})
st.bar_chart(chart_data.set_index('Candidate'))
# Score distribution
col1, col2 = st.columns(2)
with col1:
st.subheader("Score Distribution")
score_ranges = {
'Excellent (β‰₯1.2)': sum(1 for r in st.session_state.results if r['final_score'] >= 1.2),
'Good (1.0-1.2)': sum(1 for r in st.session_state.results if 1.0 <= r['final_score'] < 1.2),
'Fair (0.8-1.0)': sum(1 for r in st.session_state.results if 0.8 <= r['final_score'] < 1.0),
'Poor (<0.8)': sum(1 for r in st.session_state.results if r['final_score'] < 0.8),
}
dist_df = pd.DataFrame({
'Range': score_ranges.keys(),
'Count': score_ranges.values()
})
st.bar_chart(dist_df.set_index('Range'))
with col2:
st.subheader("Average Scores")
avg_final = np.mean([r['final_score'] for r in st.session_state.results])
avg_cross = np.mean([r['cross_encoder_score'] for r in st.session_state.results])
avg_bm25 = np.mean([r['bm25_score'] for r in st.session_state.results])
avg_intent = np.mean([r['intent_score'] for r in st.session_state.results])
st.metric("Average Final Score", f"{avg_final:.2f}")
st.metric("Average Cross-Encoder", f"{avg_cross:.2f}")
st.metric("Average BM25", f"{avg_bm25:.2f}")
st.metric("Average Intent", f"{avg_intent:.2f}")
# Memory cleanup
st.markdown("---")
st.subheader("🧹 Reset Application")
col1, col2, col3 = st.columns([1, 1, 3])
with col1:
if st.button("πŸ—‘οΈ Clear Resumes Only", type="secondary", help="Clear only the loaded resumes"):
st.session_state.resume_texts = []
st.session_state.file_names = []
st.session_state.results = []
st.session_state.current_job_description = ""
st.success("βœ… Resumes cleared!")
st.rerun()
with col2:
if st.button("🧹 Clear Everything", type="primary", help="Clear all data and free memory"):
st.session_state.resume_texts = []
st.session_state.file_names = []
st.session_state.results = []
st.session_state.current_job_description = ""
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
st.success("βœ… Everything cleared!")
st.rerun()
# Footer
st.markdown("---")
st.markdown(
"""
<div style='text-align: center; color: #666;'>
πŸš€ Powered by BAAI/bge-large-en-v1.5 & Qwen3-1.7B | Built with Streamlit
</div>
""",
unsafe_allow_html=True
)