fyp_start_space / app.py
jacob-c's picture
.
c31b527
raw
history blame
10.1 kB
import requests
import gradio as gr
import os
import torch
import json
import time
import tempfile
import shutil
import librosa
from transformers import AutoTokenizer, AutoModelForCausalLM
# Check if CUDA is available and set the device accordingly
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# API URLs and headers
AUDIO_API_URL = "https://api-inference.huggingface.co/models/MIT/ast-finetuned-audioset-10-10-0.4593"
LYRICS_API_URL = "https://api-inference.huggingface.co/models/gpt2-xl"
headers = {"Authorization": f"Bearer {os.environ.get('HF_TOKEN')}"}
def get_audio_duration(audio_path):
"""Get the duration of the audio file in seconds"""
try:
duration = librosa.get_duration(path=audio_path)
return duration
except Exception as e:
print(f"Error getting audio duration: {e}")
return None
def calculate_song_structure(duration):
"""Calculate song structure based on audio duration"""
if duration is None:
return {"verses": 2, "choruses": 1, "tokens": 200} # Default structure
# Basic rules for song structure:
# - Short clips (< 30s): 1 verse, 1 chorus
# - Medium clips (30s-2min): 2 verses, 1-2 choruses
# - Longer clips (>2min): 3 verses, 2-3 choruses
if duration < 30:
return {
"verses": 1,
"choruses": 1,
"tokens": 150
}
elif duration < 120:
return {
"verses": 2,
"choruses": 2,
"tokens": 200
}
else:
return {
"verses": 3,
"choruses": 3,
"tokens": 300
}
def create_lyrics_prompt(classification_results, song_structure):
"""Create a prompt for lyrics generation based on classification results and desired structure"""
# Get the top genre and its characteristics
top_result = classification_results[0]
genre = top_result['label']
confidence = float(top_result['score'].strip('%')) / 100
# Get additional musical elements
additional_elements = [r['label'] for r in classification_results[1:3]]
# Create a structured prompt based on song length
prompt = f"""Write song lyrics in the style of {genre}.
Theme: A {genre} song with elements of {' and '.join(additional_elements)}
Structure: {song_structure['verses']} verses and {song_structure['choruses']} choruses
Format the lyrics with [Verse 1], [Chorus], [Verse 2], etc.
Make each verse 4-6 lines and chorus 4 lines.
[Verse 1]"""
return prompt
def format_lyrics(generated_text, song_structure):
"""Format the generated lyrics according to desired structure"""
lines = generated_text.split('\n')
cleaned_lines = []
current_section = "[Verse 1]"
verse_count = 0
chorus_count = 0
for line in lines:
line = line.strip()
if not line or line.startswith('###') or line.startswith('```'):
continue
# Handle section markers
if line.lower().startswith('[verse'):
if verse_count < song_structure['verses']:
verse_count += 1
current_section = f"[Verse {verse_count}]"
cleaned_lines.append(f"\n{current_section}")
continue
elif line.lower().startswith('[chorus'):
if chorus_count < song_structure['choruses']:
chorus_count += 1
current_section = f"[Chorus {chorus_count}]"
cleaned_lines.append(f"\n{current_section}")
continue
# Add the line if we haven't exceeded our structure limits
if (current_section.startswith('[Verse') and verse_count <= song_structure['verses']) or \
(current_section.startswith('[Chorus') and chorus_count <= song_structure['choruses']):
cleaned_lines.append(line)
# Add chorus after first verse if not present
if len(cleaned_lines) == 5 and chorus_count == 0: # After 4 lines of verse + section header
chorus_count += 1
cleaned_lines.append(f"\n[Chorus 1]")
return "\n".join(cleaned_lines)
def generate_lyrics_with_retry(prompt, song_structure, max_retries=5, initial_wait=2):
"""Generate lyrics using GPT2-XL with retry logic"""
wait_time = initial_wait
for attempt in range(max_retries):
try:
response = requests.post(
LYRICS_API_URL,
headers=headers,
json={
"inputs": prompt,
"parameters": {
"max_new_tokens": song_structure['tokens'],
"temperature": 0.9,
"top_p": 0.95,
"do_sample": True,
"return_full_text": False,
"stop": ["[End]", "\n\n\n"]
}
}
)
print(f"Response status: {response.status_code}")
print(f"Response content: {response.content.decode('utf-8', errors='ignore')}")
if response.status_code == 200:
result = response.json()
if isinstance(result, list) and len(result) > 0:
generated_text = result[0].get("generated_text", "")
return format_lyrics(generated_text, song_structure)
return "Error: No text generated"
elif response.status_code == 503:
print(f"Model loading, attempt {attempt + 1}/{max_retries}. Waiting {wait_time} seconds...")
time.sleep(wait_time)
wait_time *= 1.5 # Increase wait time for next attempt
continue
else:
return f"Error generating lyrics: {response.text}"
except Exception as e:
if attempt == max_retries - 1: # Last attempt
return f"Error after {max_retries} attempts: {str(e)}"
time.sleep(wait_time)
wait_time *= 1.5
return "Failed to generate lyrics after multiple attempts. Please try again."
def format_results(classification_results, lyrics, prompt):
"""Format the results for display"""
# Format classification results
classification_text = "Classification Results:\n"
for i, result in enumerate(classification_results):
classification_text += f"{i+1}. {result['label']}: {result['score']}\n"
# Format final output
output = f"""
{classification_text}
\n---Generated Lyrics---\n
{lyrics}
"""
return output
def classify_and_generate(audio_file):
"""
Classify the audio and generate matching lyrics
"""
if audio_file is None:
return "Please upload an audio file."
try:
token = os.environ.get('HF_TOKEN')
if not token:
return "Error: HF_TOKEN environment variable is not set. Please set your Hugging Face API token."
# Get audio duration and calculate structure
if isinstance(audio_file, tuple):
audio_path = audio_file[0]
else:
audio_path = audio_file
duration = get_audio_duration(audio_path)
song_structure = calculate_song_structure(duration)
print(f"Audio duration: {duration:.2f}s, Structure: {song_structure}")
# Create a temporary file to handle the audio data
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp3') as temp_audio:
# Copy the audio file to our temporary file
shutil.copy2(audio_path, temp_audio.name)
# Read the temporary file
with open(temp_audio.name, "rb") as f:
data = f.read()
print("Sending request to Audio Classification API...")
response = requests.post(AUDIO_API_URL, headers=headers, data=data)
# Clean up the temporary file
try:
os.unlink(temp_audio.name)
except:
pass
if response.status_code == 200:
classification_results = response.json()
# Format classification results
formatted_results = []
for result in classification_results:
formatted_results.append({
'label': result['label'],
'score': f"{result['score']*100:.2f}%"
})
# Generate lyrics based on classification with retry logic
print("Generating lyrics based on classification...")
prompt = create_lyrics_prompt(formatted_results, song_structure)
lyrics = generate_lyrics_with_retry(prompt, song_structure)
# Format and return results
return format_results(formatted_results, lyrics, prompt)
elif response.status_code == 401:
return "Error: Invalid or missing API token. Please check your Hugging Face API token."
elif response.status_code == 503:
return "Error: Model is loading. Please try again in a few seconds."
else:
return f"Error: API returned status code {response.status_code}\nResponse: {response.text}"
except Exception as e:
import traceback
error_details = traceback.format_exc()
return f"Error processing request: {str(e)}\nDetails:\n{error_details}"
# Create Gradio interface
iface = gr.Interface(
fn=classify_and_generate,
inputs=gr.Audio(type="filepath", label="Upload Audio File"),
outputs=gr.Textbox(
label="Results",
lines=15,
placeholder="Upload an audio file to see classification results and generated lyrics..."
),
title="Music Genre Classifier + Lyric Generator",
description="Upload an audio file to classify its genre and generate matching lyrics using AI.",
examples=[],
)
# Launch the interface
if __name__ == "__main__":
iface.launch(server_name="0.0.0.0", server_port=7860)