File size: 37,005 Bytes
8515dc5 2ef1fb1 8515dc5 3db0204 8515dc5 8c42b47 0a49a17 8c42b47 d104d4e 0a49a17 8515dc5 8c42b47 3db0204 8515dc5 2ef1fb1 8515dc5 2ef1fb1 8515dc5 2ef1fb1 8515dc5 4adac6c 8515dc5 4adac6c 6ac84ae 4adac6c 6ac84ae 4adac6c 6ac84ae 8515dc5 6ac84ae 4adac6c 6ac84ae 8515dc5 4adac6c 8515dc5 4adac6c 6ac84ae 4adac6c 6ac84ae 4adac6c 6ac84ae 8515dc5 6ac84ae 0a49a17 8515dc5 0a49a17 8515dc5 0a49a17 8515dc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 |
import librosa
import numpy as np
import pronouncing
import re
from functools import lru_cache
import string
from nltk.corpus import cmudict
import nltk
from scipy import signal
try:
nltk.data.find('corpora/cmudict')
except LookupError:
nltk.download('cmudict')
class BeatAnalyzer:
def __init__(self):
# Mapping for standard stress patterns by time signature
# Simplified to only include 4/4, 3/4, and 6/8
self.stress_patterns = {
# Format: Strong (1.0), Medium (0.5), Weak (0.0)
"4/4": [1.0, 0.0, 0.5, 0.0], # Strong, weak, medium, weak
"3/4": [1.0, 0.0, 0.0], # Strong, weak, weak
"6/8": [1.0, 0.0, 0.0, 0.5, 0.0, 0.0] # Strong, weak, weak, medium, weak, weak
}
self.cmudict = None
try:
self.cmudict = cmudict.dict()
except:
pass # Fall back to rule-based counting if cmudict is not available
# Genre-specific syllable-to-beat ratio guidelines
self.genre_syllable_ratios = {
# Supported genres with strong syllable-to-beat patterns
'pop': (0.5, 1.0, 1.5), # Pop - significantly reduced range
'rock': (0.5, 0.9, 1.3), # Rock - reduced for brevity
'country': (0.6, 0.9, 1.2), # Country - simpler syllable patterns
'disco': (0.7, 1.0, 1.3), # Disco - tightened range
'metal': (0.6, 1.0, 1.3), # Metal - reduced upper limit
# Other genres (analysis only, no lyrics generation)
'hiphop': (1.8, 2.5, 3.5), # Hip hop often has many syllables per beat
'rap': (2.0, 3.0, 4.0), # Rap often has very high syllable counts
'folk': (0.8, 1.0, 1.3), # Folk often has close to 1:1 ratio
'jazz': (0.7, 1.0, 1.5), # Jazz can be very flexible
'reggae': (0.7, 1.0, 1.3), # Reggae often emphasizes specific beats
'soul': (0.8, 1.2, 1.6), # Soul music tends to be expressive
'r&b': (1.0, 1.5, 2.0), # R&B can have melisma
'electronic': (0.7, 1.0, 1.5), # Electronic music varies widely
'classical': (0.7, 1.0, 1.4), # Classical can vary by subgenre
'blues': (0.6, 0.8, 1.2), # Blues often extends syllables
'default': (0.6, 1.0, 1.3) # Default for unknown genres - more conservative
}
# List of genres supported for lyrics generation
# These genres have the most predictable and consistent syllable-to-beat relationships,
# making them ideal for our beat-matching algorithm
self.supported_genres = ['pop', 'rock', 'country', 'disco', 'metal']
# Common time signatures and their beat patterns with weights for prior probability
# Simplified to only include 4/4, 3/4, and 6/8
self.common_time_signatures = {
"4/4": {"beats_per_bar": 4, "beat_pattern": [1.0, 0.2, 0.5, 0.2], "weight": 0.55},
"3/4": {"beats_per_bar": 3, "beat_pattern": [1.0, 0.2, 0.3], "weight": 0.30},
"6/8": {"beats_per_bar": 6, "beat_pattern": [1.0, 0.2, 0.3, 0.8, 0.2, 0.3], "weight": 0.15}
}
# Add common accent patterns for different time signatures
self.accent_patterns = {
"4/4": [[1, 0, 0, 0], [1, 0, 2, 0], [1, 0, 2, 0, 3, 0, 2, 0]],
"3/4": [[1, 0, 0], [1, 0, 2]],
"6/8": [[1, 0, 0, 2, 0, 0], [1, 0, 0, 2, 0, 3]]
}
# Expected rhythm density (relative note density per beat) for different time signatures
self.rhythm_density = {
"4/4": [1.0, 0.7, 0.8, 0.6],
"3/4": [1.0, 0.6, 0.7],
"6/8": [1.0, 0.5, 0.4, 0.8, 0.5, 0.4]
}
@lru_cache(maxsize=128)
def count_syllables(self, word):
"""Count syllables in a word using CMU dictionary if available, otherwise use rule-based method."""
word = word.lower().strip()
word = re.sub(r'[^a-z]', '', word) # Remove non-alphabetic characters
if not word:
return 0
# Try using CMUDict first if available
if self.cmudict and word in self.cmudict:
return max([len(list(y for y in x if y[-1].isdigit())) for x in self.cmudict[word]])
# Rule-based syllable counting as fallback
# Modified version from NLTK's implementation
vowels = "aeiouy"
double_vowels = ['aa', 'ae', 'ai', 'ao', 'au', 'ay', 'ea', 'ee', 'ei', 'eo', 'eu', 'ey', 'ia', 'ie', 'ii', 'io', 'iu', 'oa', 'oe', 'oi', 'oo', 'ou', 'oy', 'ua', 'ue', 'ui', 'uo', 'uy']
prev_was_vowel = False
count = 0
final_e = False
if word.endswith('e') and not word.endswith('le'):
final_e = True
for i, char in enumerate(word):
if char in vowels:
# Check if current char and previous char form a dipthong
if prev_was_vowel and i > 0 and (word[i-1:i+1] in double_vowels):
prev_was_vowel = True
continue
if not prev_was_vowel:
count += 1
prev_was_vowel = True
else:
prev_was_vowel = False
# Handle edge cases
if word.endswith('le') and len(word) > 2 and word[-3] not in vowels:
count += 1
elif final_e:
count = max(count-1, 1) # Remove last 'e', but ensure at least 1 syllable
elif word.endswith('y') and not prev_was_vowel:
count += 1
# Ensure at least one syllable
return max(count, 1)
def detect_time_signature(self, audio_path, sr=22050):
"""
Advanced multi-method approach to time signature detection
Args:
audio_path: Path to audio file
sr: Sample rate
Returns:
dict with detected time signature and confidence
"""
# Load audio
y, sr = librosa.load(audio_path, sr=sr)
# 1. Compute onset envelope and beat positions
onset_env = librosa.onset.onset_strength(y=y, sr=sr, hop_length=512)
# Get tempo and beat frames
tempo, beat_frames = librosa.beat.beat_track(onset_envelope=onset_env, sr=sr)
beat_times = librosa.frames_to_time(beat_frames, sr=sr)
# Return default if not enough beats detected
if len(beat_times) < 8:
return {"time_signature": "4/4", "confidence": 0.5}
# 2. Extract beat strengths and normalize
beat_strengths = self._get_beat_strengths(y, sr, beat_times, onset_env)
# 3. Compute various time signature features using different methods
results = {}
# Method 1: Beat pattern autocorrelation
autocorr_result = self._detect_by_autocorrelation(onset_env, sr)
results["autocorrelation"] = autocorr_result
# Method 2: Beat strength pattern matching
pattern_result = self._detect_by_pattern_matching(beat_strengths)
results["pattern_matching"] = pattern_result
# Method 3: Spectral rhythmic analysis
spectral_result = self._detect_by_spectral_analysis(onset_env, sr)
results["spectral"] = spectral_result
# Method 4: Note density analysis
density_result = self._detect_by_note_density(y, sr, beat_times)
results["note_density"] = density_result
# Method 5: Tempo-based estimation
tempo_result = self._estimate_from_tempo(tempo)
results["tempo_based"] = tempo_result
# 4. Combine results with weighted voting
final_result = self._combine_detection_results(results, tempo)
return final_result
def _get_beat_strengths(self, y, sr, beat_times, onset_env):
"""Extract normalized strengths at beat positions"""
# Convert beat times to frames
beat_frames = librosa.time_to_frames(beat_times, sr=sr, hop_length=512)
beat_frames = [min(f, len(onset_env)-1) for f in beat_frames]
# Get beat strengths from onset envelope
beat_strengths = np.array([onset_env[f] for f in beat_frames])
# Also look at energy and spectral flux at beat positions
hop_length = 512
frame_length = 2048
# Get energy at each beat
energy = librosa.feature.rms(y=y, frame_length=frame_length, hop_length=hop_length)[0]
beat_energy = np.array([energy[min(f, len(energy)-1)] for f in beat_frames])
# Combine onset strength with energy (weighted average)
beat_strengths = 0.7 * beat_strengths + 0.3 * beat_energy
# Normalize
if np.max(beat_strengths) > 0:
beat_strengths = beat_strengths / np.max(beat_strengths)
return beat_strengths
def _detect_by_autocorrelation(self, onset_env, sr):
"""Detect meter using autocorrelation of onset strength"""
# Calculate autocorrelation of onset envelope
hop_length = 512
ac = librosa.autocorrelate(onset_env, max_size=4 * sr // hop_length)
ac = librosa.util.normalize(ac)
# Find significant peaks in autocorrelation
peaks = signal.find_peaks(ac, height=0.2, distance=sr//(8*hop_length))[0]
if len(peaks) < 2:
return {"time_signature": "4/4", "confidence": 0.4}
# Analyze peak intervals in terms of beats
peak_intervals = np.diff(peaks)
# Convert peaks to time
peak_times = peaks * hop_length / sr
# Analyze for common time signature patterns
time_sig_votes = {}
# Check if peaks match expected bar lengths
for ts, info in self.common_time_signatures.items():
beats_per_bar = info["beats_per_bar"]
# Check how well peaks match this meter
score = 0
for interval in peak_intervals:
# Check if this interval corresponds to this time signature
# Allow some tolerance around the expected value
expected = beats_per_bar * (hop_length / sr) # in seconds
tolerance = 0.25 * expected
if abs(interval * hop_length / sr - expected) < tolerance:
score += 1
if len(peak_intervals) > 0:
time_sig_votes[ts] = score / len(peak_intervals)
# Return most likely time signature
if time_sig_votes:
best_ts = max(time_sig_votes.items(), key=lambda x: x[1])
return {"time_signature": best_ts[0], "confidence": best_ts[1]}
return {"time_signature": "4/4", "confidence": 0.4}
def _detect_by_pattern_matching(self, beat_strengths):
"""Match beat strength patterns against known time signature patterns"""
if len(beat_strengths) < 6:
return {"time_signature": "4/4", "confidence": 0.4}
results = {}
# Try each possible time signature
for ts, info in self.common_time_signatures.items():
beats_per_bar = info["beats_per_bar"]
expected_pattern = info["beat_pattern"]
# Calculate correlation scores for overlapping segments
scores = []
# We need at least one complete pattern
if len(beat_strengths) >= beats_per_bar:
# Try different offsets to find best alignment
for offset in range(min(beats_per_bar, len(beat_strengths) - beats_per_bar + 1)):
# Calculate scores for each complete pattern
pattern_scores = []
for i in range(offset, len(beat_strengths) - beats_per_bar + 1, beats_per_bar):
segment = beat_strengths[i:i+beats_per_bar]
# If expected pattern is longer than segment, truncate it
pattern = expected_pattern[:len(segment)]
# Normalize segment and pattern
if np.std(segment) > 0 and np.std(pattern) > 0:
# Calculate correlation
corr = np.corrcoef(segment, pattern)[0, 1]
if not np.isnan(corr):
pattern_scores.append(corr)
if pattern_scores:
scores.append(np.mean(pattern_scores))
# Use the best score among different offsets
if scores:
confidence = max(scores)
results[ts] = confidence
# Find best match
if results:
best_ts = max(results.items(), key=lambda x: x[1])
return {"time_signature": best_ts[0], "confidence": best_ts[1]}
# Default
return {"time_signature": "4/4", "confidence": 0.5}
def _detect_by_spectral_analysis(self, onset_env, sr):
"""Analyze rhythm in frequency domain"""
# Get rhythm periodicity through Fourier Transform
# Focus on periods corresponding to typical bar lengths (1-8 seconds)
hop_length = 512
# Calculate rhythm periodicity
fft_size = 2**13 # Large enough to give good frequency resolution
S = np.abs(np.fft.rfft(onset_env, n=fft_size))
# Convert frequency to tempo in BPM
freqs = np.fft.rfftfreq(fft_size, d=hop_length/sr)
tempos = 60 * freqs
# Focus on reasonable tempo range (40-240 BPM)
tempo_mask = (tempos >= 40) & (tempos <= 240)
S_tempo = S[tempo_mask]
tempos = tempos[tempo_mask]
# Find peaks in spectrum
peaks = signal.find_peaks(S_tempo, height=np.max(S_tempo)*0.1, distance=5)[0]
if len(peaks) == 0:
return {"time_signature": "4/4", "confidence": 0.4}
# Get peak tempos and strengths
peak_tempos = tempos[peaks]
peak_strengths = S_tempo[peaks]
# Sort by strength
peak_indices = np.argsort(peak_strengths)[::-1]
peak_tempos = peak_tempos[peak_indices]
peak_strengths = peak_strengths[peak_indices]
# Analyze relationships between peaks
# For example, 3/4 typically has peaks at multiples of 3 beats
# 4/4 has peaks at multiples of 4 beats
time_sig_scores = {}
# Check relationships between top peaks
if len(peak_tempos) >= 2:
tempo_ratios = []
for i in range(len(peak_tempos)):
for j in range(i+1, len(peak_tempos)):
if peak_tempos[j] > 0:
ratio = peak_tempos[i] / peak_tempos[j]
tempo_ratios.append(ratio)
# Check for patterns indicative of different time signatures
for ts in self.common_time_signatures:
score = 0
if ts == "4/4" or ts == "6/8":
# Look for ratios close to 4 or 6
for ratio in tempo_ratios:
if abs(ratio - 4) < 0.2 or abs(ratio - 6) < 0.3:
score += 1
# Normalize score
if tempo_ratios:
time_sig_scores[ts] = min(1.0, score / len(tempo_ratios) + 0.4)
# If we have meaningful scores, return best match
if time_sig_scores:
best_ts = max(time_sig_scores.items(), key=lambda x: x[1])
return {"time_signature": best_ts[0], "confidence": best_ts[1]}
# Default fallback
return {"time_signature": "4/4", "confidence": 0.4}
def _detect_by_note_density(self, y, sr, beat_times):
"""Analyze note density patterns between beats"""
if len(beat_times) < 6:
return {"time_signature": "4/4", "confidence": 0.4}
# Extract note onsets (not just beats)
onset_times = librosa.onset.onset_detect(y=y, sr=sr, units='time')
if len(onset_times) < len(beat_times):
return {"time_signature": "4/4", "confidence": 0.4}
# Count onsets between consecutive beats
note_counts = []
for i in range(len(beat_times) - 1):
start = beat_times[i]
end = beat_times[i+1]
# Count onsets in this beat
count = sum(1 for t in onset_times if start <= t < end)
note_counts.append(count)
# Look for repeating patterns in the note counts
time_sig_scores = {}
for ts, info in self.common_time_signatures.items():
beats_per_bar = info["beats_per_bar"]
# Skip if we don't have enough data
if len(note_counts) < beats_per_bar:
continue
# Calculate pattern similarity for this time signature
scores = []
for offset in range(min(beats_per_bar, len(note_counts) - beats_per_bar + 1)):
similarities = []
for i in range(offset, len(note_counts) - beats_per_bar + 1, beats_per_bar):
# Get current bar pattern
pattern = note_counts[i:i+beats_per_bar]
# Compare with expected density pattern
expected = self.rhythm_density.get(ts, [1.0] * beats_per_bar)
expected = expected[:len(pattern)] # Truncate if needed
# Normalize both patterns
if sum(pattern) > 0 and sum(expected) > 0:
pattern_norm = [p/max(1, sum(pattern)) for p in pattern]
expected_norm = [e/sum(expected) for e in expected]
# Calculate similarity (1 - distance)
distance = sum(abs(p - e) for p, e in zip(pattern_norm, expected_norm)) / len(pattern)
similarity = 1 - min(1.0, distance)
similarities.append(similarity)
if similarities:
scores.append(np.mean(similarities))
# Use the best score
if scores:
time_sig_scores[ts] = max(scores)
# Return best match
if time_sig_scores:
best_ts = max(time_sig_scores.items(), key=lambda x: x[1])
return {"time_signature": best_ts[0], "confidence": best_ts[1]}
# Default
return {"time_signature": "4/4", "confidence": 0.4}
def _estimate_from_tempo(self, tempo):
"""Use tempo to help estimate likely time signature"""
# Statistical tendencies: slower tempos often in compound meters (6/8)
# Fast tempos favor 4/4
scores = {}
if tempo < 70:
# Slow tempos favor compound meters
scores = {
"4/4": 0.5,
"3/4": 0.4,
"6/8": 0.7
}
elif 70 <= tempo <= 120:
# Medium tempos favor 4/4, 3/4
scores = {
"4/4": 0.7,
"3/4": 0.6,
"6/8": 0.3
}
else:
# Fast tempos favor 4/4
scores = {
"4/4": 0.8,
"3/4": 0.4,
"6/8": 0.2
}
# Find best match
best_ts = max(scores.items(), key=lambda x: x[1])
return {"time_signature": best_ts[0], "confidence": best_ts[1]}
def _combine_detection_results(self, results, tempo):
"""Combine results from different detection methods"""
# Define weights for different methods
method_weights = {
"autocorrelation": 0.25,
"pattern_matching": 0.30,
"spectral": 0.20,
"note_density": 0.20,
"tempo_based": 0.05
}
# Prior probability (based on frequency in music)
prior_weights = {ts: info["weight"] for ts, info in self.common_time_signatures.items()}
# Combine votes
total_votes = {ts: prior_weights.get(ts, 0.1) for ts in self.common_time_signatures}
for method, result in results.items():
ts = result["time_signature"]
confidence = result["confidence"]
weight = method_weights.get(method, 0.1)
# Add weighted vote
if ts in total_votes:
total_votes[ts] += confidence * weight
else:
total_votes[ts] = confidence * weight
# Special case: disambiguate between 3/4 and 6/8
if "3/4" in total_votes and "6/8" in total_votes:
# If the two are close, use tempo to break tie
if abs(total_votes["3/4"] - total_votes["6/8"]) < 0.1:
if tempo < 100: # Slower tempo favors 6/8
total_votes["6/8"] += 0.1
else: # Faster tempo favors 3/4
total_votes["3/4"] += 0.1
# Get highest scoring time signature
best_ts = max(total_votes.items(), key=lambda x: x[1])
# Calculate confidence score (normalize to 0-1)
confidence = best_ts[1] / (sum(total_votes.values()) + 0.001)
confidence = min(0.95, max(0.4, confidence)) # Bound confidence
return {
"time_signature": best_ts[0],
"confidence": confidence,
"all_candidates": {ts: float(score) for ts, score in total_votes.items()}
}
def analyze_beat_pattern(self, audio_path, sr=22050, time_signature="4/4", auto_detect=False):
"""Analyze beat patterns and stresses in music using the provided time signature."""
# Auto-detect time signature if requested
if auto_detect:
time_sig_result = self.detect_time_signature(audio_path, sr)
time_signature = time_sig_result["time_signature"]
# Load audio
y, sr = librosa.load(audio_path, sr=sr)
# Get tempo and beat frames
tempo, beat_frames = librosa.beat.beat_track(y=y, sr=sr)
beat_times = librosa.frames_to_time(beat_frames, sr=sr)
# Get beat strengths using onset envelope
onset_env = librosa.onset.onset_strength(y=y, sr=sr)
beat_strengths = onset_env[beat_frames]
# Normalize beat strengths
if len(beat_strengths) > 0 and np.max(beat_strengths) > np.min(beat_strengths):
beat_strengths = (beat_strengths - np.min(beat_strengths)) / (np.max(beat_strengths) - np.min(beat_strengths))
# Parse time signature
if '/' in time_signature:
num, denom = map(int, time_signature.split('/'))
else:
num, denom = 4, 4 # Default to 4/4
# Group beats into bars (each bar is one phrase based on time signature)
bars = []
current_bar = []
for i, (time, strength) in enumerate(zip(beat_times, beat_strengths)):
# Determine metrical position and stress
metrical_position = i % num
# Define stress pattern according to time signature
if time_signature == "4/4":
if metrical_position == 0: # First beat (strongest)
stress = "S" # Strong
elif metrical_position == 2: # Third beat (medium)
stress = "M" # Medium
else: # Second and fourth beats (weak)
stress = "W" # Weak
elif time_signature == "3/4":
if metrical_position == 0: # First beat (strongest)
stress = "S" # Strong
else: # Other beats (weak)
stress = "W" # Weak
elif time_signature == "6/8":
if metrical_position == 0: # First beat (strongest)
stress = "S" # Strong
elif metrical_position == 3: # Fourth beat (medium)
stress = "M" # Medium
else: # Other beats (weak)
stress = "W" # Weak
else:
# Default pattern for other time signatures
if metrical_position == 0:
stress = "S"
else:
stress = "W"
# Add beat to current bar
current_bar.append({
'time': time,
'strength': strength,
'stress': stress,
'metrical_position': metrical_position
})
# When we complete a bar, add it to our bars list
if metrical_position == num - 1 or i == len(beat_times) - 1:
if current_bar:
bars.append(current_bar)
current_bar = []
# If there's any remaining beats, add them as a partial bar
if current_bar:
bars.append(current_bar)
# Organize beats into phrases (one phrase = one bar)
phrases = []
for i, bar in enumerate(bars):
phrase_beats = bar
if not phrase_beats:
continue
# Calculate the phrase information
phrase = {
'id': i,
'num_beats': len(phrase_beats),
'beats': phrase_beats,
'stress_pattern': ''.join(beat['stress'] for beat in phrase_beats),
'start_time': phrase_beats[0]['time'],
'end_time': phrase_beats[-1]['time'] + (phrase_beats[-1]['time'] - phrase_beats[-2]['time'] if len(phrase_beats) > 1 else 0.5),
}
phrases.append(phrase)
return {
'tempo': tempo,
'time_signature': time_signature,
'num_beats': len(beat_times),
'beat_times': beat_times.tolist(),
'beat_strengths': beat_strengths.tolist(),
'phrases': phrases
}
def create_lyric_template(self, beat_analysis):
"""Create templates for lyrics based on beat phrases."""
templates = []
if not beat_analysis or 'phrases' not in beat_analysis:
return templates
phrases = beat_analysis['phrases']
for i, phrase in enumerate(phrases):
duration = phrase['end_time'] - phrase['start_time']
template = {
'id': phrase['id'],
'start_time': phrase['start_time'],
'end_time': phrase['end_time'],
'duration': duration,
'num_beats': phrase['num_beats'],
'stress_pattern': phrase['stress_pattern'],
'syllable_guide': self.generate_phrase_guide(phrase)
}
templates.append(template)
return templates
def generate_phrase_guide(self, template, words_per_beat=0.5):
"""Generate a guide for each phrase to help the LLM."""
num_beats = template['num_beats']
stress_pattern = template['stress_pattern']
# Create a visual representation of the stress pattern
# S = Strong stress, M = Medium stress, W = Weak stress
visual_pattern = ""
for i, stress in enumerate(stress_pattern):
if stress == "S":
visual_pattern += "STRONG "
elif stress == "M":
visual_pattern += "medium "
else:
visual_pattern += "weak "
# Estimate number of words based on beats (very rough estimate)
est_words = max(1, int(num_beats * 0.3)) # Reduced further to encourage extreme brevity
# Estimate syllables - use ultra conservative ranges
# For 4/4 time signature, we want to enforce extremely short phrases
if stress_pattern == "SWMW": # 4/4 time
min_syllables = max(1, int(num_beats * 0.4)) # Reduced from 0.5
max_syllables = min(6, int(num_beats * 1.2)) # Reduced from 1.3 to max 6
else:
min_syllables = max(1, int(num_beats * 0.4)) # Reduced from 0.5
max_syllables = min(6, int(num_beats * 1.1)) # Reduced from 1.2 to max 6
# Store these in the template for future reference
template['min_expected'] = min_syllables
template['max_expected'] = max_syllables
guide = f"~{est_words} words, ~{min_syllables}-{max_syllables} syllables | Pattern: {visual_pattern}"
# Add additional guidance to the template for natural phrasing
template['phrasing_guide'] = "ULTRA SHORT LINES. One thought per line. Use FRAGMENTS not sentences."
return guide
def check_syllable_stress_match(self, text, template, genre="pop"):
"""Check if lyrics match the syllable and stress pattern with genre-specific flexibility."""
# Split text into words and count syllables
words = text.split()
syllable_count = sum(self.count_syllables(word) for word in words)
# Get expected syllable count based on number of beats
expected_count = template['num_beats']
# Get syllable-to-beat ratios based on genre
genre_lower = genre.lower()
if genre_lower in self.genre_syllable_ratios:
min_ratio, typical_ratio, max_ratio = self.genre_syllable_ratios[genre_lower]
else:
min_ratio, typical_ratio, max_ratio = self.genre_syllable_ratios['default']
# Calculate flexible min and max syllable expectations based on genre
# Use extremely conservative ranges to enforce ultra-short lines
min_expected = max(1, int(expected_count * min_ratio))
max_expected = min(6, int(expected_count * max_ratio)) # Hard cap at 6 syllables
# For 4/4 time signature, cap the max syllables per line even lower
if template['stress_pattern'] == "SWMW": # 4/4 time
max_expected = min(max_expected, 6) # Cap at 6 syllables max for 4/4
# Record min and max expected in the template for future reference
template['min_expected'] = min_expected
template['max_expected'] = max_expected
# Check if syllable count falls within genre-appropriate range
within_range = min_expected <= syllable_count <= max_expected
# Consider typical ratio - how close are we to the ideal for this genre?
ideal_count = int(expected_count * typical_ratio)
# Ensure ideal count is also within our constrained range
ideal_count = max(min_expected, min(max_expected, ideal_count))
# More lenient approach to determining "ideal"
# Count as ideal if within 1 syllable of the target instead of exact match
close_to_ideal = abs(syllable_count - ideal_count) <= 1
closeness_to_ideal = 1.0 - min(abs(syllable_count - ideal_count) / (max_expected - min_expected + 1), 1.0)
# Get detailed syllable breakdown for stress analysis
word_syllables = []
for word in words:
count = self.count_syllables(word)
word_syllables.append(count)
# Analyze stress pattern match using a more flexible approach
stress_pattern = template['stress_pattern']
# Simple stress matching algorithm (can be improved in future versions)
# We need to map syllables to beats in a more flexible way
syllable_to_beat_mapping = self._map_syllables_to_beats(word_syllables, stress_pattern)
# Calculate stress match score based on alignment of stressed syllables with strong beats
stress_match_percentage = self._calculate_stress_match(words, word_syllables, syllable_to_beat_mapping, stress_pattern)
# Consider a stress match if the percentage is high enough
stress_matches = stress_match_percentage >= 0.6 # Reduced from 0.7 to be more lenient
return {
'syllable_count': syllable_count,
'expected_count': expected_count,
'min_expected': min_expected,
'max_expected': max_expected,
'within_range': within_range,
'matches_beat_count': syllable_count == expected_count, # Exact match (strict)
'close_match': within_range, # Flexible match (based on genre)
'stress_matches': stress_matches,
'stress_match_percentage': stress_match_percentage,
'closeness_to_ideal': closeness_to_ideal,
'word_syllables': word_syllables,
'ideal_syllable_count': ideal_count,
'close_to_ideal': close_to_ideal # New field
}
def _map_syllables_to_beats(self, word_syllables, stress_pattern):
"""Map syllables to beats in a flexible way."""
total_syllables = sum(word_syllables)
total_beats = len(stress_pattern)
# Simple mapping for now - this could be improved with more sophisticated algorithms
if total_syllables <= total_beats:
# Fewer syllables than beats - some beats have no syllables (prolongation)
mapping = []
syllable_index = 0
for beat_index in range(total_beats):
if syllable_index < total_syllables:
mapping.append((syllable_index, beat_index))
syllable_index += 1
return mapping
else:
# More syllables than beats - some beats have multiple syllables (melisma/syncopation)
mapping = []
syllables_per_beat = total_syllables / total_beats
for beat_index in range(total_beats):
start_syllable = int(beat_index * syllables_per_beat)
end_syllable = int((beat_index + 1) * syllables_per_beat)
for syllable_index in range(start_syllable, end_syllable):
if syllable_index < total_syllables:
mapping.append((syllable_index, beat_index))
return mapping
def _calculate_stress_match(self, words, word_syllables, syllable_to_beat_mapping, stress_pattern):
"""Calculate how well syllable stresses match beat stresses."""
# This is a simplified version - real stress analysis would be more complex
# For now, we'll assume the first syllable of each word is stressed
# First, create a flat list of all syllables with their stress (1 = stressed, 0 = unstressed)
syllable_stresses = []
for word, syllable_count in zip(words, word_syllables):
# Simple assumption: first syllable is stressed, rest are unstressed
for i in range(syllable_count):
if i == 0: # First syllable of word
syllable_stresses.append(1) # Stressed
else:
syllable_stresses.append(0) # Unstressed
# Count matches between syllable stress and beat stress
matches = 0
total_mapped = 0
for syllable_index, beat_index in syllable_to_beat_mapping:
if syllable_index < len(syllable_stresses):
syllable_stress = syllable_stresses[syllable_index]
beat_stress = 1 if stress_pattern[beat_index] == 'S' else (0.5 if stress_pattern[beat_index] == 'M' else 0)
# Consider it a match if:
# - Stressed syllable on Strong beat
# - Unstressed syllable on Weak beat
# - Some partial credit for other combinations
if (syllable_stress == 1 and beat_stress > 0.5) or (syllable_stress == 0 and beat_stress < 0.5):
matches += 1
elif syllable_stress == 1 and beat_stress == 0.5: # Stressed syllable on Medium beat
matches += 0.7
total_mapped += 1
if total_mapped == 0:
return 0
return matches / total_mapped |