root
music confidence
38b696f
raw
history blame
27.1 kB
import os
import io
import gradio as gr
import torch
import numpy as np
from transformers import (
AutoModelForAudioClassification,
AutoFeatureExtractor,
AutoTokenizer,
pipeline,
AutoModelForCausalLM,
BitsAndBytesConfig
)
from huggingface_hub import login
from utils import (
load_audio,
extract_audio_duration,
extract_mfcc_features,
calculate_lyrics_length,
format_genre_results,
ensure_cuda_availability,
preprocess_audio_for_model
)
from emotionanalysis import MusicAnalyzer
import librosa
# Login to Hugging Face Hub if token is provided
if "HF_TOKEN" in os.environ:
login(token=os.environ["HF_TOKEN"])
# Constants
GENRE_MODEL_NAME = "dima806/music_genres_classification"
MUSIC_DETECTION_MODEL = "MIT/ast-finetuned-audioset-10-10-0.4593"
LLM_MODEL_NAME = "meta-llama/Llama-3.1-8B-Instruct"
SAMPLE_RATE = 22050 # Standard sample rate for audio processing
# Check CUDA availability (for informational purposes)
CUDA_AVAILABLE = ensure_cuda_availability()
# Create music detection pipeline
print(f"Loading music detection model: {MUSIC_DETECTION_MODEL}")
try:
music_detector = pipeline(
"audio-classification",
model=MUSIC_DETECTION_MODEL,
device=0 if CUDA_AVAILABLE else -1
)
print("Successfully loaded music detection pipeline")
except Exception as e:
print(f"Error creating music detection pipeline: {str(e)}")
# Fallback to manual loading
try:
music_processor = AutoFeatureExtractor.from_pretrained(MUSIC_DETECTION_MODEL)
music_model = AutoModelForAudioClassification.from_pretrained(MUSIC_DETECTION_MODEL)
print("Successfully loaded music detection model and feature extractor")
except Exception as e2:
print(f"Error loading music detection model components: {str(e2)}")
raise RuntimeError(f"Could not load music detection model: {str(e2)}")
# Create genre classification pipeline
print(f"Loading audio classification model: {GENRE_MODEL_NAME}")
try:
genre_classifier = pipeline(
"audio-classification",
model=GENRE_MODEL_NAME,
device=0 if CUDA_AVAILABLE else -1
)
print("Successfully loaded audio classification pipeline")
except Exception as e:
print(f"Error creating pipeline: {str(e)}")
# Fallback to manual loading
try:
genre_processor = AutoFeatureExtractor.from_pretrained(GENRE_MODEL_NAME)
genre_model = AutoModelForAudioClassification.from_pretrained(GENRE_MODEL_NAME)
print("Successfully loaded audio classification model and feature extractor")
except Exception as e2:
print(f"Error loading model components: {str(e2)}")
raise RuntimeError(f"Could not load genre classification model: {str(e2)}")
# Load LLM with appropriate quantization for T4 GPU
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
)
llm_tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL_NAME)
llm_model = AutoModelForCausalLM.from_pretrained(
LLM_MODEL_NAME,
device_map="auto",
quantization_config=bnb_config,
torch_dtype=torch.float16,
)
# Create LLM pipeline
llm_pipeline = pipeline(
"text-generation",
model=llm_model,
tokenizer=llm_tokenizer,
max_new_tokens=512,
)
# Initialize music emotion analyzer
music_analyzer = MusicAnalyzer()
def extract_audio_features(audio_file):
"""Extract audio features from an audio file."""
try:
# Load the audio file using utility function
y, sr = load_audio(audio_file, SAMPLE_RATE)
if y is None or sr is None:
raise ValueError("Failed to load audio data")
# Get audio duration in seconds
duration = extract_audio_duration(y, sr)
# Extract MFCCs for genre classification (may not be needed with the pipeline)
mfccs_mean = extract_mfcc_features(y, sr, n_mfcc=20)
return {
"features": mfccs_mean,
"duration": duration,
"waveform": y,
"sample_rate": sr,
"path": audio_file # Keep path for the pipeline
}
except Exception as e:
print(f"Error extracting audio features: {str(e)}")
raise ValueError(f"Failed to extract audio features: {str(e)}")
def classify_genre(audio_data):
"""Classify the genre of the audio using the loaded model."""
try:
# First attempt: Try using the pipeline if available
if 'genre_classifier' in globals():
results = genre_classifier(audio_data["path"])
# Transform pipeline results to our expected format
top_genres = [(result["label"], result["score"]) for result in results[:3]]
return top_genres
# Second attempt: Use manually loaded model components
elif 'genre_processor' in globals() and 'genre_model' in globals():
# Process audio input with feature extractor
inputs = genre_processor(
audio_data["waveform"],
sampling_rate=audio_data["sample_rate"],
return_tensors="pt"
)
with torch.no_grad():
outputs = genre_model(**inputs)
predictions = outputs.logits.softmax(dim=-1)
# Get the top 3 genres
values, indices = torch.topk(predictions, 3)
# Map indices to genre labels
genre_labels = genre_model.config.id2label
top_genres = []
for i, (value, index) in enumerate(zip(values[0], indices[0])):
genre = genre_labels[index.item()]
confidence = value.item()
top_genres.append((genre, confidence))
return top_genres
else:
raise ValueError("No genre classification model available")
except Exception as e:
print(f"Error in genre classification: {str(e)}")
# Fallback: return a default genre if everything fails
return [("rock", 1.0)]
def detect_music(audio_data):
"""Detect if the audio is music using the MIT AST model."""
try:
# First attempt: Try using the pipeline if available
if 'music_detector' in globals():
results = music_detector(audio_data["path"])
# Look for music-related classes in the results
music_confidence = 0.0
for result in results:
label = result["label"].lower()
if any(music_term in label for music_term in ["music", "song", "singing", "instrument"]):
music_confidence = max(music_confidence, result["score"])
return music_confidence >= 0.2, results
# Second attempt: Use manually loaded model components
elif 'music_processor' in globals() and 'music_model' in globals():
# Process audio input with feature extractor
inputs = music_processor(
audio_data["waveform"],
sampling_rate=audio_data["sample_rate"],
return_tensors="pt"
)
with torch.no_grad():
outputs = music_model(**inputs)
predictions = outputs.logits.softmax(dim=-1)
# Get the top predictions
values, indices = torch.topk(predictions, 5)
# Map indices to labels
labels = music_model.config.id2label
# Check for music-related classes
music_confidence = 0.0
results = []
for i, (value, index) in enumerate(zip(values[0], indices[0])):
label = labels[index.item()].lower()
score = value.item()
results.append({"label": label, "score": score})
if any(music_term in label for music_term in ["music", "song", "singing", "instrument"]):
music_confidence = max(music_confidence, score)
return music_confidence >= 0.2, results
else:
raise ValueError("No music detection model available")
except Exception as e:
print(f"Error in music detection: {str(e)}")
return False, []
def detect_beats(y, sr):
"""Detect beats in the audio using librosa."""
# Get tempo and beat frames
tempo, beat_frames = librosa.beat.beat_track(y=y, sr=sr)
# Convert beat frames to time in seconds
beat_times = librosa.frames_to_time(beat_frames, sr=sr)
return {
"tempo": tempo,
"beat_frames": beat_frames,
"beat_times": beat_times,
"beat_count": len(beat_times)
}
def detect_sections(y, sr):
"""Detect sections (verse, chorus, etc.) in the audio."""
# Compute the spectral contrast
S = np.abs(librosa.stft(y))
contrast = librosa.feature.spectral_contrast(S=S, sr=sr)
# Compute the chroma features
chroma = librosa.feature.chroma_cqt(y=y, sr=sr)
# Use a combination of contrast and chroma to find segment boundaries
# Average over frequency axis to get time series
contrast_avg = np.mean(contrast, axis=0)
chroma_avg = np.mean(chroma, axis=0)
# Normalize
contrast_avg = (contrast_avg - np.mean(contrast_avg)) / np.std(contrast_avg)
chroma_avg = (chroma_avg - np.mean(chroma_avg)) / np.std(chroma_avg)
# Combine features
combined = contrast_avg + chroma_avg
# Detect structural boundaries
bounds = librosa.segment.agglomerative(combined, 3) # Adjust for typical song structures
# Convert to time in seconds
bound_times = librosa.frames_to_time(bounds, sr=sr)
# Estimate section types based on position and length
sections = []
for i in range(len(bound_times) - 1):
start = bound_times[i]
end = bound_times[i+1]
duration = end - start
# Simple heuristic to label sections
if i == 0:
section_type = "intro"
elif i == len(bound_times) - 2:
section_type = "outro"
elif i % 2 == 1: # Alternating verse/chorus pattern
section_type = "chorus"
else:
section_type = "verse"
# If we have a short section in the middle, it might be a bridge
if 0 < i < len(bound_times) - 2 and duration < 20:
section_type = "bridge"
sections.append({
"type": section_type,
"start": start,
"end": end,
"duration": duration
})
return sections
def estimate_syllables_per_section(beats_info, sections):
"""Estimate the number of syllables needed for each section based on beats."""
syllables_per_section = []
for section in sections:
# Find beats that fall within this section
section_beats = [
beat for beat in beats_info["beat_times"]
if section["start"] <= beat < section["end"]
]
# Calculate syllables based on section type and beat count
beat_count = len(section_beats)
# Adjust syllable count based on section type and genre conventions
if section["type"] == "verse":
# Verses typically have more syllables per beat (more words)
syllable_count = beat_count * 1.2
elif section["type"] == "chorus":
# Choruses often have fewer syllables per beat (more sustained notes)
syllable_count = beat_count * 0.9
elif section["type"] == "bridge":
syllable_count = beat_count * 1.0
else: # intro, outro
syllable_count = beat_count * 0.5 # Often instrumental or sparse lyrics
syllables_per_section.append({
"type": section["type"],
"start": section["start"],
"end": section["end"],
"duration": section["duration"],
"beat_count": beat_count,
"syllable_count": int(syllable_count)
})
return syllables_per_section
def calculate_detailed_song_structure(audio_data):
"""Calculate detailed song structure for better lyrics generation."""
y = audio_data["waveform"]
sr = audio_data["sample_rate"]
# Detect beats
beats_info = detect_beats(y, sr)
# Detect sections
sections = detect_sections(y, sr)
# Estimate syllables per section
syllables_info = estimate_syllables_per_section(beats_info, sections)
return {
"beats": beats_info,
"sections": sections,
"syllables": syllables_info
}
def generate_lyrics(genre, duration, emotion_results, song_structure=None):
"""Generate lyrics based on genre, duration, emotion, and detailed song structure."""
# If no song structure is provided, fall back to the original approach
if song_structure is None:
# Calculate appropriate lyrics length based on audio duration
lines_count = calculate_lyrics_length(duration)
# Calculate approximate number of verses and chorus
if lines_count <= 6:
# Very short song - one verse and chorus
verse_lines = 2
chorus_lines = 2
elif lines_count <= 10:
# Medium song - two verses and chorus
verse_lines = 3
chorus_lines = 2
else:
# Longer song - two verses, chorus, and bridge
verse_lines = 3
chorus_lines = 2
# Extract emotion and theme data from analysis results
primary_emotion = emotion_results["emotion_analysis"]["primary_emotion"]
primary_theme = emotion_results["theme_analysis"]["primary_theme"]
tempo = emotion_results["rhythm_analysis"]["tempo"]
key = emotion_results["tonal_analysis"]["key"]
mode = emotion_results["tonal_analysis"]["mode"]
# Create prompt for the LLM
prompt = f"""
You are a talented songwriter who specializes in {genre} music.
Write original {genre} song lyrics for a song that is {duration:.1f} seconds long.
Music analysis has detected the following qualities in the music:
- Tempo: {tempo:.1f} BPM
- Key: {key} {mode}
- Primary emotion: {primary_emotion}
- Primary theme: {primary_theme}
The lyrics should:
- Perfectly capture the essence and style of {genre} music
- Express the {primary_emotion} emotion and {primary_theme} theme
- Be approximately {lines_count} lines long
- Have a coherent theme and flow
- Follow this structure:
* Verse: {verse_lines} lines
* Chorus: {chorus_lines} lines
* {f'Bridge: 2 lines' if lines_count > 10 else ''}
- Be completely original
- Match the song duration of {duration:.1f} seconds
- Keep each line concise and impactful
Your lyrics:
"""
else:
# Extract emotion and theme data from analysis results
primary_emotion = emotion_results["emotion_analysis"]["primary_emotion"]
primary_theme = emotion_results["theme_analysis"]["primary_theme"]
tempo = emotion_results["rhythm_analysis"]["tempo"]
key = emotion_results["tonal_analysis"]["key"]
mode = emotion_results["tonal_analysis"]["mode"]
# Create detailed structure instructions for the LLM
structure_instructions = "Follow this exact song structure with specified syllable counts:\n"
for section in song_structure["syllables"]:
section_type = section["type"].capitalize()
start_time = f"{section['start']:.1f}"
end_time = f"{section['end']:.1f}"
duration = f"{section['duration']:.1f}"
beat_count = section["beat_count"]
syllable_count = section["syllable_count"]
structure_instructions += f"* {section_type} ({start_time}s - {end_time}s, {duration}s duration):\n"
structure_instructions += f" - {beat_count} beats\n"
structure_instructions += f" - Approximately {syllable_count} syllables\n"
# Calculate approximate total number of lines based on syllables
total_syllables = sum(section["syllable_count"] for section in song_structure["syllables"])
estimated_lines = max(4, int(total_syllables / 8)) # Rough estimate: average 8 syllables per line
# Create prompt for the LLM
prompt = f"""
You are a talented songwriter who specializes in {genre} music.
Write original {genre} song lyrics for a song that is {duration:.1f} seconds long.
Music analysis has detected the following qualities in the music:
- Tempo: {tempo:.1f} BPM
- Key: {key} {mode}
- Primary emotion: {primary_emotion}
- Primary theme: {primary_theme}
{structure_instructions}
The lyrics should:
- Perfectly capture the essence and style of {genre} music
- Express the {primary_emotion} emotion and {primary_theme} theme
- Have approximately {estimated_lines} lines total, distributed across sections
- For each line, include a syllable count that matches the beats in that section
- Include timestamps [MM:SS] at the beginning of each section
- Be completely original
- Match the exact song structure provided above
Important: Each section should have lyrics with syllable counts matching the beats!
Your lyrics:
"""
# Generate lyrics using the LLM
response = llm_pipeline(
prompt,
do_sample=True,
temperature=0.7,
top_p=0.9,
repetition_penalty=1.1,
return_full_text=False
)
# Extract and clean generated lyrics
lyrics = response[0]["generated_text"].strip()
# Add section labels if they're not present (in fallback mode)
if song_structure is None and "Verse" not in lyrics and "Chorus" not in lyrics:
lines = lyrics.split('\n')
formatted_lyrics = []
current_section = "Verse"
verse_count = 0
for i, line in enumerate(lines):
if i == 0:
formatted_lyrics.append("[Verse]")
verse_count = 1
elif i == verse_lines:
formatted_lyrics.append("\n[Chorus]")
elif i == verse_lines + chorus_lines and lines_count > 10:
formatted_lyrics.append("\n[Bridge]")
elif i == verse_lines + chorus_lines + (2 if lines_count > 10 else 0):
formatted_lyrics.append("\n[Verse]")
verse_count = 2
formatted_lyrics.append(line)
lyrics = '\n'.join(formatted_lyrics)
# Add timestamps in detailed mode if needed
elif song_structure is not None:
# Ensure the lyrics have proper section headings with timestamps
for section in song_structure["syllables"]:
section_type = section["type"].capitalize()
start_time_str = f"{int(section['start']) // 60:02d}:{int(section['start']) % 60:02d}"
section_header = f"[{start_time_str}] {section_type}"
# Check if this section header is missing and add it if needed
if section_header not in lyrics and section["type"] not in ["intro", "outro"]:
# Find where this section might be based on timestamp
time_matches = [
idx for idx, line in enumerate(lyrics.split('\n'))
if f"{int(section['start']) // 60:02d}:{int(section['start']) % 60:02d}" in line
]
if time_matches:
lines = lyrics.split('\n')
line_idx = time_matches[0]
lines[line_idx] = section_header
lyrics = '\n'.join(lines)
return lyrics
def process_audio(audio_file):
"""Main function to process audio file, classify genre, and generate lyrics."""
if audio_file is None:
return "Please upload an audio file.", None, None
try:
# Extract audio features
audio_data = extract_audio_features(audio_file)
# First check if it's music
try:
is_music, ast_results = detect_music(audio_data)
except Exception as e:
print(f"Error in music detection: {str(e)}")
return f"Error in music detection: {str(e)}", None, []
if not is_music:
return "The uploaded audio does not appear to be music. Please upload a music file.", None, ast_results
# Classify genre
try:
top_genres = classify_genre(audio_data)
# Format genre results using utility function
genre_results = format_genre_results(top_genres)
except Exception as e:
print(f"Error in genre classification: {str(e)}")
return f"Error in genre classification: {str(e)}", None, ast_results
# Analyze music emotions and themes
try:
emotion_results = music_analyzer.analyze_music(audio_file)
except Exception as e:
print(f"Error in emotion analysis: {str(e)}")
# Continue even if emotion analysis fails
emotion_results = {
"emotion_analysis": {"primary_emotion": "Unknown"},
"theme_analysis": {"primary_theme": "Unknown"},
"rhythm_analysis": {"tempo": 0},
"tonal_analysis": {"key": "Unknown", "mode": ""}
}
# Calculate detailed song structure for better lyrics alignment
try:
song_structure = calculate_detailed_song_structure(audio_data)
except Exception as e:
print(f"Error analyzing song structure: {str(e)}")
# Continue with a simpler approach if this fails
song_structure = None
# Generate lyrics based on top genre, emotion analysis, and song structure
try:
primary_genre, _ = top_genres[0]
lyrics = generate_lyrics(primary_genre, audio_data["duration"], emotion_results, song_structure)
except Exception as e:
print(f"Error generating lyrics: {str(e)}")
lyrics = f"Error generating lyrics: {str(e)}"
return genre_results, lyrics, ast_results
except Exception as e:
error_msg = f"Error processing audio: {str(e)}"
print(error_msg)
return error_msg, None, []
# Create Gradio interface
with gr.Blocks(title="Music Genre Classifier & Lyrics Generator") as demo:
gr.Markdown("# Music Genre Classifier & Lyrics Generator")
gr.Markdown("Upload a music file to classify its genre, analyze its emotions, and generate matching lyrics.")
with gr.Row():
with gr.Column():
audio_input = gr.Audio(label="Upload Music", type="filepath")
submit_btn = gr.Button("Analyze & Generate")
with gr.Column():
genre_output = gr.Textbox(label="Detected Genres", lines=5)
emotion_output = gr.Textbox(label="Emotion Analysis", lines=5)
ast_output = gr.Textbox(label="Audio Classification Results (AST)", lines=5)
lyrics_output = gr.Textbox(label="Generated Lyrics", lines=15)
def display_results(audio_file):
if audio_file is None:
return "Please upload an audio file.", "No emotion analysis available.", "No audio classification available.", None
try:
# Process audio and get genre, lyrics, and AST results
genre_results, lyrics, ast_results = process_audio(audio_file)
# Check if we got an error message instead of results
if isinstance(genre_results, str) and genre_results.startswith("Error"):
return genre_results, "Error in emotion analysis", "Error in audio classification", None
# Format emotion analysis results
try:
emotion_results = music_analyzer.analyze_music(audio_file)
emotion_text = f"Tempo: {emotion_results['summary']['tempo']:.1f} BPM\n"
emotion_text += f"Key: {emotion_results['summary']['key']} {emotion_results['summary']['mode']}\n"
emotion_text += f"Primary Emotion: {emotion_results['summary']['primary_emotion']}\n"
emotion_text += f"Primary Theme: {emotion_results['summary']['primary_theme']}"
# Add detailed song structure information if available
try:
audio_data = extract_audio_features(audio_file)
song_structure = calculate_detailed_song_structure(audio_data)
emotion_text += "\n\nSong Structure:\n"
for section in song_structure["syllables"]:
emotion_text += f"- {section['type'].capitalize()}: {section['start']:.1f}s to {section['end']:.1f}s "
emotion_text += f"({section['duration']:.1f}s, {section['beat_count']} beats, ~{section['syllable_count']} syllables)\n"
except Exception as e:
print(f"Error displaying song structure: {str(e)}")
# Continue without showing structure details
except Exception as e:
print(f"Error in emotion analysis: {str(e)}")
emotion_text = f"Error in emotion analysis: {str(e)}"
# Format AST classification results
if ast_results and isinstance(ast_results, list):
ast_text = "Audio Classification Results (AST Model):\n"
for result in ast_results[:5]: # Show top 5 results
ast_text += f"{result['label']}: {result['score']*100:.2f}%\n"
else:
ast_text = "No valid audio classification results available."
return genre_results, emotion_text, ast_text, lyrics
except Exception as e:
error_msg = f"Error: {str(e)}"
print(error_msg)
return error_msg, "Error in emotion analysis", "Error in audio classification", None
submit_btn.click(
fn=display_results,
inputs=[audio_input],
outputs=[genre_output, emotion_output, ast_output, lyrics_output]
)
gr.Markdown("### How it works")
gr.Markdown("""
1. Upload an audio file of your choice
2. The system will classify the genre using the dima806/music_genres_classification model
3. The system will analyze the musical emotion and theme using advanced audio processing
4. The system will identify the song structure, beats, and timing patterns
5. Based on the detected genre, emotion, and structure, it will generate lyrics that match the beats, sections, and flow of the music
6. The lyrics will include appropriate section markings and syllable counts to align with the music
""")
# Launch the app
demo.launch()