root
syllables trying first
4ddd8f4
raw
history blame
43 kB
import os
import io
import gradio as gr
import torch
import numpy as np
import re
import pronouncing # Add this to requirements.txt for syllable counting
from transformers import (
AutoModelForAudioClassification,
AutoFeatureExtractor,
AutoTokenizer,
pipeline,
AutoModelForCausalLM,
BitsAndBytesConfig
)
from huggingface_hub import login
from utils import (
load_audio,
extract_audio_duration,
extract_mfcc_features,
calculate_lyrics_length,
format_genre_results,
ensure_cuda_availability,
preprocess_audio_for_model
)
from emotionanalysis import MusicAnalyzer
import librosa
# Login to Hugging Face Hub if token is provided
if "HF_TOKEN" in os.environ:
login(token=os.environ["HF_TOKEN"])
# Constants
GENRE_MODEL_NAME = "dima806/music_genres_classification"
MUSIC_DETECTION_MODEL = "MIT/ast-finetuned-audioset-10-10-0.4593"
LLM_MODEL_NAME = "meta-llama/Llama-3.1-8B-Instruct"
SAMPLE_RATE = 22050 # Standard sample rate for audio processing
# Check CUDA availability (for informational purposes)
CUDA_AVAILABLE = ensure_cuda_availability()
# Create music detection pipeline
print(f"Loading music detection model: {MUSIC_DETECTION_MODEL}")
try:
music_detector = pipeline(
"audio-classification",
model=MUSIC_DETECTION_MODEL,
device=0 if CUDA_AVAILABLE else -1
)
print("Successfully loaded music detection pipeline")
except Exception as e:
print(f"Error creating music detection pipeline: {str(e)}")
# Fallback to manual loading
try:
music_processor = AutoFeatureExtractor.from_pretrained(MUSIC_DETECTION_MODEL)
music_model = AutoModelForAudioClassification.from_pretrained(MUSIC_DETECTION_MODEL)
print("Successfully loaded music detection model and feature extractor")
except Exception as e2:
print(f"Error loading music detection model components: {str(e2)}")
raise RuntimeError(f"Could not load music detection model: {str(e2)}")
# Create genre classification pipeline
print(f"Loading audio classification model: {GENRE_MODEL_NAME}")
try:
genre_classifier = pipeline(
"audio-classification",
model=GENRE_MODEL_NAME,
device=0 if CUDA_AVAILABLE else -1
)
print("Successfully loaded audio classification pipeline")
except Exception as e:
print(f"Error creating pipeline: {str(e)}")
# Fallback to manual loading
try:
genre_processor = AutoFeatureExtractor.from_pretrained(GENRE_MODEL_NAME)
genre_model = AutoModelForAudioClassification.from_pretrained(GENRE_MODEL_NAME)
print("Successfully loaded audio classification model and feature extractor")
except Exception as e2:
print(f"Error loading model components: {str(e2)}")
raise RuntimeError(f"Could not load genre classification model: {str(e2)}")
# Load LLM with appropriate quantization for T4 GPU
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
)
llm_tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL_NAME)
llm_model = AutoModelForCausalLM.from_pretrained(
LLM_MODEL_NAME,
device_map="auto",
quantization_config=bnb_config,
torch_dtype=torch.float16,
)
# Create LLM pipeline
llm_pipeline = pipeline(
"text-generation",
model=llm_model,
tokenizer=llm_tokenizer,
max_new_tokens=512,
)
# Initialize music emotion analyzer
music_analyzer = MusicAnalyzer()
# New function: Count syllables in text
def count_syllables(text):
"""Count syllables in a given text using the pronouncing library."""
words = re.findall(r'\b[a-zA-Z]+\b', text.lower())
syllable_count = 0
for word in words:
# Get pronunciations for the word
pronunciations = pronouncing.phones_for_word(word)
if pronunciations:
# Count syllables in the first pronunciation
syllable_count += pronouncing.syllable_count(pronunciations[0])
else:
# Fallback: estimate syllables based on vowel groups
vowels = "aeiouy"
count = 0
prev_is_vowel = False
for char in word:
is_vowel = char.lower() in vowels
if is_vowel and not prev_is_vowel:
count += 1
prev_is_vowel = is_vowel
if word.endswith('e'):
count -= 1
if word.endswith('le') and len(word) > 2 and word[-3] not in vowels:
count += 1
if count == 0:
count = 1
syllable_count += count
return syllable_count
def extract_audio_features(audio_file):
"""Extract audio features from an audio file."""
try:
# Load the audio file using utility function
y, sr = load_audio(audio_file, SAMPLE_RATE)
if y is None or sr is None:
raise ValueError("Failed to load audio data")
# Get audio duration in seconds
duration = extract_audio_duration(y, sr)
# Extract MFCCs for genre classification (may not be needed with the pipeline)
mfccs_mean = extract_mfcc_features(y, sr, n_mfcc=20)
return {
"features": mfccs_mean,
"duration": duration,
"waveform": y,
"sample_rate": sr,
"path": audio_file # Keep path for the pipeline
}
except Exception as e:
print(f"Error extracting audio features: {str(e)}")
raise ValueError(f"Failed to extract audio features: {str(e)}")
def classify_genre(audio_data):
"""Classify the genre of the audio using the loaded model."""
try:
# First attempt: Try using the pipeline if available
if 'genre_classifier' in globals():
results = genre_classifier(audio_data["path"])
# Transform pipeline results to our expected format
top_genres = [(result["label"], result["score"]) for result in results[:3]]
return top_genres
# Second attempt: Use manually loaded model components
elif 'genre_processor' in globals() and 'genre_model' in globals():
# Process audio input with feature extractor
inputs = genre_processor(
audio_data["waveform"],
sampling_rate=audio_data["sample_rate"],
return_tensors="pt"
)
with torch.no_grad():
outputs = genre_model(**inputs)
predictions = outputs.logits.softmax(dim=-1)
# Get the top 3 genres
values, indices = torch.topk(predictions, 3)
# Map indices to genre labels
genre_labels = genre_model.config.id2label
top_genres = []
for i, (value, index) in enumerate(zip(values[0], indices[0])):
genre = genre_labels[index.item()]
confidence = value.item()
top_genres.append((genre, confidence))
return top_genres
else:
raise ValueError("No genre classification model available")
except Exception as e:
print(f"Error in genre classification: {str(e)}")
# Fallback: return a default genre if everything fails
return [("rock", 1.0)]
def detect_music(audio_data):
"""Detect if the audio is music using the MIT AST model."""
try:
# First attempt: Try using the pipeline if available
if 'music_detector' in globals():
results = music_detector(audio_data["path"])
# Look for music-related classes in the results
music_confidence = 0.0
for result in results:
label = result["label"].lower()
if any(music_term in label for music_term in ["music", "song", "singing", "instrument"]):
music_confidence = max(music_confidence, result["score"])
return music_confidence >= 0.2, results
# Second attempt: Use manually loaded model components
elif 'music_processor' in globals() and 'music_model' in globals():
# Process audio input with feature extractor
inputs = music_processor(
audio_data["waveform"],
sampling_rate=audio_data["sample_rate"],
return_tensors="pt"
)
with torch.no_grad():
outputs = music_model(**inputs)
predictions = outputs.logits.softmax(dim=-1)
# Get the top predictions
values, indices = torch.topk(predictions, 5)
# Map indices to labels
labels = music_model.config.id2label
# Check for music-related classes
music_confidence = 0.0
results = []
for i, (value, index) in enumerate(zip(values[0], indices[0])):
label = labels[index.item()].lower()
score = value.item()
results.append({"label": label, "score": score})
if any(music_term in label for music_term in ["music", "song", "singing", "instrument"]):
music_confidence = max(music_confidence, score)
return music_confidence >= 0.2, results
else:
raise ValueError("No music detection model available")
except Exception as e:
print(f"Error in music detection: {str(e)}")
return False, []
# Enhanced detect_beats function for better rhythm analysis
def detect_beats(y, sr):
"""Detect beats and create a detailed rhythmic map of the audio."""
# Get tempo and beat frames
tempo, beat_frames = librosa.beat.beat_track(y=y, sr=sr)
# Convert beat frames to time in seconds
beat_times = librosa.frames_to_time(beat_frames, sr=sr)
# Calculate beat strength to identify strong and weak beats
onset_env = librosa.onset.onset_strength(y=y, sr=sr)
beat_strengths = [onset_env[frame] for frame in beat_frames if frame < len(onset_env)]
# If we couldn't get strengths for all beats, use average for missing ones
if beat_strengths:
avg_strength = sum(beat_strengths) / len(beat_strengths)
while len(beat_strengths) < len(beat_times):
beat_strengths.append(avg_strength)
else:
beat_strengths = [1.0] * len(beat_times)
# Calculate time intervals between beats (for rhythm pattern detection)
intervals = []
for i in range(1, len(beat_times)):
intervals.append(beat_times[i] - beat_times[i-1])
# Try to detect time signature based on beat pattern
time_signature = 4 # Default assumption of 4/4 time
if len(beat_strengths) > 8:
strength_pattern = []
for i in range(0, len(beat_strengths), 2):
if i+1 < len(beat_strengths):
ratio = beat_strengths[i] / (beat_strengths[i+1] + 0.0001)
strength_pattern.append(ratio)
# Check if we have a clear 3/4 pattern (strong-weak-weak)
if strength_pattern:
three_pattern = sum(1 for r in strength_pattern if r > 1.2) / len(strength_pattern)
if three_pattern > 0.6:
time_signature = 3
# Group beats into phrases
phrases = []
current_phrase = []
for i in range(len(beat_times)):
current_phrase.append(i)
# Look for natural phrase boundaries
if i < len(beat_times) - 1:
is_stronger_next = False
if i < len(beat_strengths) - 1:
is_stronger_next = beat_strengths[i+1] > beat_strengths[i] * 1.2
is_longer_gap = False
if i < len(beat_times) - 1 and intervals:
current_gap = beat_times[i+1] - beat_times[i]
avg_gap = sum(intervals) / len(intervals)
is_longer_gap = current_gap > avg_gap * 1.3
if (is_stronger_next or is_longer_gap) and len(current_phrase) >= 2:
phrases.append(current_phrase)
current_phrase = []
# Add the last phrase if not empty
if current_phrase:
phrases.append(current_phrase)
return {
"tempo": tempo,
"beat_frames": beat_frames,
"beat_times": beat_times,
"beat_count": len(beat_times),
"beat_strengths": beat_strengths,
"intervals": intervals,
"time_signature": time_signature,
"phrases": phrases
}
def detect_sections(y, sr):
"""Detect sections (verse, chorus, etc.) in the audio."""
# Compute the spectral contrast
S = np.abs(librosa.stft(y))
contrast = librosa.feature.spectral_contrast(S=S, sr=sr)
# Compute the chroma features
chroma = librosa.feature.chroma_cqt(y=y, sr=sr)
# Use a combination of contrast and chroma to find segment boundaries
# Average over frequency axis to get time series
contrast_avg = np.mean(contrast, axis=0)
chroma_avg = np.mean(chroma, axis=0)
# Normalize
contrast_avg = (contrast_avg - np.mean(contrast_avg)) / np.std(contrast_avg)
chroma_avg = (chroma_avg - np.mean(chroma_avg)) / np.std(chroma_avg)
# Combine features
combined = contrast_avg + chroma_avg
# Detect structural boundaries
bounds = librosa.segment.agglomerative(combined, 3) # Adjust for typical song structures
# Convert to time in seconds
bound_times = librosa.frames_to_time(bounds, sr=sr)
# Estimate section types based on position and length
sections = []
for i in range(len(bound_times) - 1):
start = bound_times[i]
end = bound_times[i+1]
duration = end - start
# Simple heuristic to label sections
if i == 0:
section_type = "intro"
elif i == len(bound_times) - 2:
section_type = "outro"
elif i % 2 == 1: # Alternating verse/chorus pattern
section_type = "chorus"
else:
section_type = "verse"
# If we have a short section in the middle, it might be a bridge
if 0 < i < len(bound_times) - 2 and duration < 20:
section_type = "bridge"
sections.append({
"type": section_type,
"start": start,
"end": end,
"duration": duration
})
return sections
# New function: Create flexible syllable templates
def create_flexible_syllable_templates(beats_info):
"""Create syllable templates based purely on beat patterns without assuming song structure."""
# Get the beat times and strengths
beat_times = beats_info["beat_times"]
beat_strengths = beats_info.get("beat_strengths", [1.0] * len(beat_times))
phrases = beats_info.get("phrases", [])
# If no phrases were detected, create a simple division
if not phrases:
# Default to 4-beat phrases
phrases = []
for i in range(0, len(beat_times), 4):
end_idx = min(i + 4, len(beat_times))
if end_idx - i >= 2: # Ensure at least 2 beats per phrase
phrases.append(list(range(i, end_idx)))
# Create syllable templates for each phrase
syllable_templates = []
for phrase in phrases:
# Calculate appropriate syllable count for this phrase
beat_count = len(phrase)
phrase_strengths = [beat_strengths[i] for i in phrase if i < len(beat_strengths)]
avg_strength = sum(phrase_strengths) / len(phrase_strengths) if phrase_strengths else 1.0
# Base calculation: 1-2 syllables per beat depending on tempo
tempo = beats_info.get("tempo", 120)
if tempo > 120: # Fast tempo
syllables_per_beat = 1.0
elif tempo > 90: # Medium tempo
syllables_per_beat = 1.5
else: # Slow tempo
syllables_per_beat = 2.0
# Adjust for beat strength
syllables_per_beat *= (0.8 + (avg_strength * 0.4))
# Calculate total syllables for the phrase
phrase_syllables = int(beat_count * syllables_per_beat)
if phrase_syllables < 2:
phrase_syllables = 2
syllable_templates.append(str(phrase_syllables))
return "-".join(syllable_templates)
# New function: Analyze flexible structure
def analyze_flexible_structure(audio_data):
"""Analyze music structure without assuming traditional song sections."""
y = audio_data["waveform"]
sr = audio_data["sample_rate"]
# Enhanced beat detection
beats_info = detect_beats(y, sr)
# Identify segments with similar audio features (using MFCC)
mfcc = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13)
# Use agglomerative clustering to find segment boundaries
segment_boundaries = librosa.segment.agglomerative(mfcc, 3)
segment_times = librosa.frames_to_time(segment_boundaries, sr=sr)
# Create segments
segments = []
for i in range(len(segment_times)-1):
start = segment_times[i]
end = segment_times[i+1]
# Find beats within this segment
segment_beats = []
for j, time in enumerate(beats_info["beat_times"]):
if start <= time < end:
segment_beats.append(j)
# Create syllable template for this segment
if segment_beats:
segment_beats_info = {
"beat_times": [beats_info["beat_times"][j] for j in segment_beats],
"tempo": beats_info.get("tempo", 120)
}
if "beat_strengths" in beats_info:
segment_beats_info["beat_strengths"] = [
beats_info["beat_strengths"][j] for j in segment_beats
if j < len(beats_info["beat_strengths"])
]
if "intervals" in beats_info:
segment_beats_info["intervals"] = beats_info["intervals"]
if "phrases" in beats_info:
# Filter phrases to include only beats in this segment
segment_phrases = []
for phrase in beats_info["phrases"]:
segment_phrase = [beat_idx for beat_idx in phrase if beat_idx in segment_beats]
if len(segment_phrase) >= 2:
segment_phrases.append(segment_phrase)
segment_beats_info["phrases"] = segment_phrases
syllable_template = create_flexible_syllable_templates(segment_beats_info)
else:
syllable_template = "4" # Default fallback
segments.append({
"start": start,
"end": end,
"duration": end - start,
"syllable_template": syllable_template
})
return {
"beats": beats_info,
"segments": segments
}
# Enhanced estimate_syllables_per_section function
def estimate_syllables_per_section(beats_info, sections):
"""Estimate the number of syllables needed for each section based on beats."""
syllables_per_section = []
for section in sections:
# Find beats that fall within this section
section_beats = [
beat for beat in beats_info["beat_times"]
if section["start"] <= beat < section["end"]
]
# Calculate syllables based on section type and beat count
beat_count = len(section_beats)
# Extract beat strengths for this section if available
section_beat_strengths = []
if "beat_strengths" in beats_info:
for i, beat_time in enumerate(beats_info["beat_times"]):
if section["start"] <= beat_time < section["end"] and i < len(beats_info["beat_strengths"]):
section_beat_strengths.append(beats_info["beat_strengths"][i])
# Create a segment-specific beat info structure for template creation
segment_beats_info = {
"beat_times": section_beats,
"tempo": beats_info.get("tempo", 120)
}
if section_beat_strengths:
segment_beats_info["beat_strengths"] = section_beat_strengths
if "intervals" in beats_info:
segment_beats_info["intervals"] = beats_info["intervals"]
# Create a detailed syllable template for this section
syllable_template = create_flexible_syllable_templates(segment_beats_info)
# Calculate estimated syllable count
expected_counts = [int(count) for count in syllable_template.split("-")]
total_syllables = sum(expected_counts)
syllables_per_section.append({
"type": section["type"],
"start": section["start"],
"end": section["end"],
"duration": section["duration"],
"beat_count": beat_count,
"syllable_count": total_syllables,
"syllable_template": syllable_template
})
return syllables_per_section
def calculate_detailed_song_structure(audio_data):
"""Calculate detailed song structure for better lyrics generation."""
y = audio_data["waveform"]
sr = audio_data["sample_rate"]
# Enhanced beat detection
beats_info = detect_beats(y, sr)
# Detect sections
sections = detect_sections(y, sr)
# Create enhanced syllable info per section
syllables_info = estimate_syllables_per_section(beats_info, sections)
# Get flexible structure analysis as an alternative approach
try:
flexible_structure = analyze_flexible_structure(audio_data)
except Exception as e:
print(f"Warning: Flexible structure analysis failed: {str(e)}")
flexible_structure = None
return {
"beats": beats_info,
"sections": sections,
"syllables": syllables_info,
"flexible_structure": flexible_structure
}
# New function: Verify syllable counts
def verify_flexible_syllable_counts(lyrics, templates):
"""Verify that the generated lyrics match the required syllable counts."""
# Split lyrics into lines
lines = [line.strip() for line in lyrics.split("\n") if line.strip()]
# Check syllable counts for each line
verification_notes = []
for i, line in enumerate(lines):
if i >= len(templates):
break
template = templates[i]
# Handle different template formats
if isinstance(template, dict) and "syllable_template" in template:
expected_counts = [int(count) for count in template["syllable_template"].split("-")]
elif isinstance(template, str):
expected_counts = [int(count) for count in template.split("-")]
else:
continue
# Count actual syllables
actual_count = count_syllables(line)
# Calculate difference
total_expected = sum(expected_counts)
if abs(actual_count - total_expected) > 2: # Allow small differences
verification_notes.append(f"Line {i+1}: Expected {total_expected} syllables, got {actual_count}")
# If we found issues, add them as notes at the end of the lyrics
if verification_notes:
lyrics += "\n\n[Note: Potential rhythm mismatches in these lines:]\n"
lyrics += "\n".join(verification_notes)
lyrics += "\n[You may want to adjust these lines to match the music's rhythm better]"
return lyrics
# Modified generate_lyrics function
def generate_lyrics(genre, duration, emotion_results, song_structure=None):
"""Generate lyrics based on the genre, emotion, and structure analysis."""
# Extract emotion and theme data from analysis results
primary_emotion = emotion_results["emotion_analysis"]["primary_emotion"]
primary_theme = emotion_results["theme_analysis"]["primary_theme"]
# Extract numeric values safely with fallbacks
try:
tempo = float(emotion_results["rhythm_analysis"]["tempo"])
except (KeyError, ValueError, TypeError):
tempo = 0.0
key = emotion_results["tonal_analysis"]["key"]
mode = emotion_results["tonal_analysis"]["mode"]
# Format syllable templates for the prompt
syllable_guidance = ""
templates_for_verification = []
if song_structure:
# Try to use flexible structure if available
if "flexible_structure" in song_structure and song_structure["flexible_structure"]:
flexible = song_structure["flexible_structure"]
if "segments" in flexible and flexible["segments"]:
syllable_guidance = "Follow these exact syllable patterns for each line:\n"
for i, segment in enumerate(flexible["segments"]):
if i < 15: # Limit to 15 lines to keep prompt manageable
syllable_guidance += f"Line {i+1}: {segment['syllable_template']} syllables\n"
templates_for_verification.append(segment["syllable_template"])
# Fallback to traditional sections if needed
elif "syllables" in song_structure and song_structure["syllables"]:
syllable_guidance = "Follow these syllable patterns for each section:\n"
for section in song_structure["syllables"]:
if "syllable_template" in section:
syllable_guidance += f"[{section['type'].capitalize()}]: {section['syllable_template']} syllables per line\n"
elif "syllable_count" in section:
syllable_guidance += f"[{section['type'].capitalize()}]: ~{section['syllable_count']} syllables total\n"
if "syllable_template" in section:
templates_for_verification.append(section)
# If we couldn't get specific templates, use general guidance
if not syllable_guidance:
syllable_guidance = "Make sure each line has an appropriate syllable count for singing:\n"
syllable_guidance += "- For faster sections (tempo > 120 BPM): 4-6 syllables per line\n"
syllable_guidance += "- For medium tempo sections: 6-8 syllables per line\n"
syllable_guidance += "- For slower sections (tempo < 90 BPM): 8-10 syllables per line\n"
# Add examples of syllable counting
syllable_guidance += "\nExamples of syllable counting:\n"
syllable_guidance += "- 'I can see the light' = 4 syllables\n"
syllable_guidance += "- 'When it fades a-way' = 4 syllables\n"
syllable_guidance += "- 'The sun is shin-ing bright to-day' = 8 syllables\n"
syllable_guidance += "- 'I'll be wait-ing for you' = 6 syllables\n"
# Determine if we should use traditional sections or not
use_sections = True
if song_structure and "flexible_structure" in song_structure and song_structure["flexible_structure"]:
# If we have more than 4 segments, it's likely not a traditional song structure
if "segments" in song_structure["flexible_structure"]:
segments = song_structure["flexible_structure"]["segments"]
if len(segments) > 4:
use_sections = False
# Create enhanced prompt for the LLM
if use_sections:
# Traditional approach with sections
# Calculate appropriate lyrics length and section distribution
try:
if song_structure and "beats" in song_structure:
beats_info = song_structure["beats"]
tempo = beats_info.get("tempo", 120)
time_signature = beats_info.get("time_signature", 4)
lines_structure = calculate_lyrics_length(duration, tempo, time_signature)
# Handle both possible return types
if isinstance(lines_structure, dict):
total_lines = lines_structure["lines_count"]
# Extract section line counts if available
verse_lines = 0
chorus_lines = 0
bridge_lines = 0
for section in lines_structure["sections"]:
if section["type"] == "verse":
verse_lines = section["lines"]
elif section["type"] == "chorus":
chorus_lines = section["lines"]
elif section["type"] == "bridge":
bridge_lines = section["lines"]
else:
# The function returned just an integer (old behavior)
total_lines = lines_structure
# Default section distribution based on total lines
if total_lines <= 6:
verse_lines = 2
chorus_lines = 2
bridge_lines = 0
elif total_lines <= 10:
verse_lines = 3
chorus_lines = 2
bridge_lines = 0
else:
verse_lines = 3
chorus_lines = 2
bridge_lines = 2
else:
# Fallback to simple calculation
total_lines = max(4, int(duration / 10))
# Default section distribution
if total_lines <= 6:
verse_lines = 2
chorus_lines = 2
bridge_lines = 0
elif total_lines <= 10:
verse_lines = 3
chorus_lines = 2
bridge_lines = 0
else:
verse_lines = 3
chorus_lines = 2
bridge_lines = 2
except Exception as e:
print(f"Error calculating lyrics length: {str(e)}")
total_lines = max(4, int(duration / 10))
# Default section distribution
verse_lines = 3
chorus_lines = 2
bridge_lines = 0
prompt = f"""
You are a talented songwriter who specializes in {genre} music.
Write original {genre} song lyrics for a song that is {duration:.1f} seconds long.
Music analysis has detected the following qualities in the music:
- Tempo: {tempo:.1f} BPM
- Key: {key} {mode}
- Primary emotion: {primary_emotion}
- Primary theme: {primary_theme}
IMPORTANT: The lyrics must match the rhythm of the music exactly!
{syllable_guidance}
When writing the lyrics:
1. Count syllables carefully for each line to match the specified pattern
2. Ensure words fall naturally on the beat
3. Place stressed syllables on strong beats
4. Create a coherent theme throughout the lyrics
The lyrics should:
- Perfectly capture the essence and style of {genre} music
- Express the {primary_emotion} emotion and {primary_theme} theme
- Be approximately {total_lines} lines long
- Follow this structure:
* Verse: {verse_lines} lines
* Chorus: {chorus_lines} lines
* {f'Bridge: {bridge_lines} lines' if bridge_lines > 0 else ''}
- Be completely original
- Match the song duration of {duration:.1f} seconds
Your lyrics:
"""
else:
# Flexible approach without traditional sections
prompt = f"""
You are a talented songwriter who specializes in {genre} music.
Write original lyrics that match the rhythm of a {genre} music segment that is {duration:.1f} seconds long.
Music analysis has detected the following qualities:
- Tempo: {tempo:.1f} BPM
- Key: {key} {mode}
- Primary emotion: {primary_emotion}
- Primary theme: {primary_theme}
IMPORTANT: The lyrics must match the rhythm of the music exactly!
{syllable_guidance}
When writing the lyrics:
1. Count syllables carefully for each line to match the specified pattern
2. Ensure words fall naturally on the beat
3. Place stressed syllables on strong beats
4. Create coherent lyrics that would work for this music segment
The lyrics should:
- Perfectly capture the essence and style of {genre} music
- Express the {primary_emotion} emotion and {primary_theme} theme
- Be completely original
- Maintain a consistent theme throughout
- Match the audio segment duration of {duration:.1f} seconds
DON'T include any section labels like [Verse] or [Chorus] unless specifically instructed.
Instead, write lyrics that flow naturally and match the music's rhythm.
Your lyrics:
"""
# Generate lyrics using the LLM
response = llm_pipeline(
prompt,
do_sample=True,
temperature=0.7,
top_p=0.9,
repetition_penalty=1.1,
return_full_text=False
)
# Extract and clean generated lyrics
lyrics = response[0]["generated_text"].strip()
# Verify syllable counts if we have templates
if templates_for_verification:
lyrics = verify_flexible_syllable_counts(lyrics, templates_for_verification)
# Add section labels if they're not present and we're using the traditional approach
if use_sections and "Verse" not in lyrics and "Chorus" not in lyrics:
lines = lyrics.split('\n')
formatted_lyrics = []
line_count = 0
for i, line in enumerate(lines):
if not line.strip():
formatted_lyrics.append(line)
continue
if line_count == 0:
formatted_lyrics.append("[Verse]")
elif line_count == verse_lines:
formatted_lyrics.append("\n[Chorus]")
elif line_count == verse_lines + chorus_lines and bridge_lines > 0:
formatted_lyrics.append("\n[Bridge]")
formatted_lyrics.append(line)
line_count += 1
lyrics = '\n'.join(formatted_lyrics)
return lyrics
def process_audio(audio_file):
"""Main function to process audio file, classify genre, and generate lyrics."""
if audio_file is None:
return "Please upload an audio file.", None, None
try:
# Extract audio features
audio_data = extract_audio_features(audio_file)
# First check if it's music
try:
is_music, ast_results = detect_music(audio_data)
except Exception as e:
print(f"Error in music detection: {str(e)}")
return f"Error in music detection: {str(e)}", None, []
if not is_music:
return "The uploaded audio does not appear to be music. Please upload a music file.", None, ast_results
# Classify genre
try:
top_genres = classify_genre(audio_data)
# Format genre results using utility function
genre_results = format_genre_results(top_genres)
except Exception as e:
print(f"Error in genre classification: {str(e)}")
return f"Error in genre classification: {str(e)}", None, ast_results
# Analyze music emotions and themes
try:
emotion_results = music_analyzer.analyze_music(audio_file)
except Exception as e:
print(f"Error in emotion analysis: {str(e)}")
# Continue even if emotion analysis fails
emotion_results = {
"emotion_analysis": {"primary_emotion": "Unknown"},
"theme_analysis": {"primary_theme": "Unknown"},
"rhythm_analysis": {"tempo": 0},
"tonal_analysis": {"key": "Unknown", "mode": ""},
"summary": {"tempo": 0, "key": "Unknown", "mode": "", "primary_emotion": "Unknown", "primary_theme": "Unknown"}
}
# Calculate detailed song structure for better lyrics alignment
try:
song_structure = calculate_detailed_song_structure(audio_data)
except Exception as e:
print(f"Error analyzing song structure: {str(e)}")
# Continue with a simpler approach if this fails
song_structure = None
# Generate lyrics based on top genre, emotion analysis, and song structure
try:
primary_genre, _ = top_genres[0]
lyrics = generate_lyrics(primary_genre, audio_data["duration"], emotion_results, song_structure)
except Exception as e:
print(f"Error generating lyrics: {str(e)}")
lyrics = f"Error generating lyrics: {str(e)}"
return genre_results, lyrics, ast_results
except Exception as e:
error_msg = f"Error processing audio: {str(e)}"
print(error_msg)
return error_msg, None, []
# Create Gradio interface
with gr.Blocks(title="Music Genre Classifier & Lyrics Generator") as demo:
gr.Markdown("# Music Genre Classifier & Lyrics Generator")
gr.Markdown("Upload a music file to classify its genre, analyze its emotions, and generate matching lyrics.")
with gr.Row():
with gr.Column():
audio_input = gr.Audio(label="Upload Music", type="filepath")
submit_btn = gr.Button("Analyze & Generate")
with gr.Column():
genre_output = gr.Textbox(label="Detected Genres", lines=5)
emotion_output = gr.Textbox(label="Emotion Analysis", lines=5)
ast_output = gr.Textbox(label="Audio Classification Results (AST)", lines=5)
lyrics_output = gr.Textbox(label="Generated Lyrics", lines=15)
def display_results(audio_file):
if audio_file is None:
return "Please upload an audio file.", "No emotion analysis available.", "No audio classification available.", None
try:
# Process audio and get genre, lyrics, and AST results
genre_results, lyrics, ast_results = process_audio(audio_file)
# Check if we got an error message instead of results
if isinstance(genre_results, str) and genre_results.startswith("Error"):
return genre_results, "Error in emotion analysis", "Error in audio classification", None
# Format emotion analysis results
try:
emotion_results = music_analyzer.analyze_music(audio_file)
emotion_text = f"Tempo: {emotion_results['summary']['tempo']:.1f} BPM\n"
emotion_text += f"Key: {emotion_results['summary']['key']} {emotion_results['summary']['mode']}\n"
emotion_text += f"Primary Emotion: {emotion_results['summary']['primary_emotion']}\n"
emotion_text += f"Primary Theme: {emotion_results['summary']['primary_theme']}"
# Add detailed song structure information if available
try:
audio_data = extract_audio_features(audio_file)
song_structure = calculate_detailed_song_structure(audio_data)
emotion_text += "\n\nSong Structure:\n"
for section in song_structure["syllables"]:
emotion_text += f"- {section['type'].capitalize()}: {section['start']:.1f}s to {section['end']:.1f}s "
emotion_text += f"({section['duration']:.1f}s, {section['beat_count']} beats, "
if "syllable_template" in section:
emotion_text += f"template: {section['syllable_template']})\n"
else:
emotion_text += f"~{section['syllable_count']} syllables)\n"
# Add flexible structure info if available
if "flexible_structure" in song_structure and song_structure["flexible_structure"]:
flexible = song_structure["flexible_structure"]
if "segments" in flexible and flexible["segments"]:
emotion_text += "\nDetailed Rhythm Analysis:\n"
for i, segment in enumerate(flexible["segments"][:5]): # Show first 5 segments
emotion_text += f"- Segment {i+1}: {segment['start']:.1f}s to {segment['end']:.1f}s, "
emotion_text += f"pattern: {segment['syllable_template']}\n"
if len(flexible["segments"]) > 5:
emotion_text += f" (+ {len(flexible['segments']) - 5} more segments)\n"
except Exception as e:
print(f"Error displaying song structure: {str(e)}")
# Continue without showing structure details
except Exception as e:
print(f"Error in emotion analysis: {str(e)}")
emotion_text = f"Error in emotion analysis: {str(e)}"
# Format AST classification results
if ast_results and isinstance(ast_results, list):
ast_text = "Audio Classification Results (AST Model):\n"
for result in ast_results[:5]: # Show top 5 results
ast_text += f"{result['label']}: {result['score']*100:.2f}%\n"
else:
ast_text = "No valid audio classification results available."
return genre_results, emotion_text, ast_text, lyrics
except Exception as e:
error_msg = f"Error: {str(e)}"
print(error_msg)
return error_msg, "Error in emotion analysis", "Error in audio classification", None
submit_btn.click(
fn=display_results,
inputs=[audio_input],
outputs=[genre_output, emotion_output, ast_output, lyrics_output]
)
gr.Markdown("### How it works")
gr.Markdown("""
1. Upload an audio file of your choice
2. The system will classify the genre using the dima806/music_genres_classification model
3. The system will analyze the musical emotion and theme using advanced audio processing
4. The system will identify the song structure, beats, and timing patterns
5. The system will create syllable templates that precisely match the rhythm of the music
6. Based on the detected genre, emotion, and syllable templates, it will generate lyrics that align perfectly with the beats
7. The system verifies syllable counts to ensure the generated lyrics can be sung naturally with the music
""")
# Launch the app
demo.launch()