bark / bark_infinity /clonevoice.py
jamalsenouci's picture
Upload folder using huggingface_hub
c6919c4
from bark_infinity import generation
from bark_infinity import api
from bark_infinity.generation import SAMPLE_RATE, load_codec_model
from encodec.utils import convert_audio
import torchaudio
import torch
import os
import gradio
import numpy as np
import shutil
import math
import datetime
from pathlib import Path
import re
import gradio
from pydub import AudioSegment
from typing import List
from math import ceil
from encodec.utils import convert_audio
from bark_infinity.hubert.customtokenizer import CustomTokenizer
from bark_infinity.hubert.hubert_manager import HuBERTManager
from bark_infinity.hubert.pre_kmeans_hubert import CustomHubert
def sanitize_filename(filename):
# replace invalid characters with underscores
return re.sub(r"[^a-zA-Z0-9_]", "_", filename)
CONTEXT_WINDOW_SIZE = 1024
SEMANTIC_RATE_HZ = 49.9
SEMANTIC_VOCAB_SIZE = 10_000
CODEBOOK_SIZE = 1024
N_COARSE_CODEBOOKS = 2
N_FINE_CODEBOOKS = 8
COARSE_RATE_HZ = 75
SAMPLE_RATE = 24_000
TEXT_ENCODING_OFFSET = 10_048
SEMANTIC_PAD_TOKEN = 10_000
TEXT_PAD_TOKEN = 129_595
SEMANTIC_INFER_TOKEN = 129_599
from bark_infinity import api
from bark_infinity import generation
from bark_infinity import text_processing
from bark_infinity import config
# test polish
alt_model = {
"repo": "Hobis/bark-voice-cloning-polish-HuBERT-quantizer",
"model": "polish-HuBERT-quantizer_8_epoch.pth",
"tokenizer_name": "polish_tokenizer_large.pth",
}
"""
def validate_prompt_ratio(history_prompt):
semantic_to_coarse_ratio = COARSE_RATE_HZ / SEMANTIC_RATE_HZ
semantic_prompt = history_prompt["semantic_prompt"]
coarse_prompt = history_prompt["coarse_prompt"]
fine_prompt = history_prompt["fine_prompt"]
current_semantic_len = len(semantic_prompt)
current_coarse_len = coarse_prompt.shape[1]
current_fine_len = fine_prompt.shape[1]
expected_coarse_len = int(current_semantic_len * semantic_to_coarse_ratio)
expected_fine_len = expected_coarse_len
if current_coarse_len != expected_coarse_len:
print(f"Coarse length mismatch! Expected {expected_coarse_len}, got {current_coarse_len}.")
return False
if current_fine_len != expected_fine_len:
print(f"Fine length mismatch! Expected {expected_fine_len}, got {current_fine_len}.")
return False
return True
"""
import os
def write_clone_npz(filepath, full_generation, regen_fine=False, gen_raw_coarse=False, **kwargs):
gen_raw_coarse = False
filepath = api.generate_unique_filepath(filepath)
# np.savez_compressed(filepath, semantic_prompt = full_generation["semantic_prompt"], coarse_prompt = full_generation["coarse_prompt"], fine_prompt = full_generation["fine_prompt"])
if "semantic_prompt" in full_generation:
np.savez(
filepath,
semantic_prompt=full_generation["semantic_prompt"],
coarse_prompt=full_generation["coarse_prompt"],
fine_prompt=full_generation["fine_prompt"],
)
quick_codec_render(filepath)
else:
print("No semantic prompt to save")
history_prompt = load_npz(filepath)
if regen_fine:
# maybe cut half or something so half a speaker, so we have some history, would do that anyhing? or dupe it?
# fine_tokens = generation.generate_fine(full_generation["coarse_prompt"])
fine_tokens = generation.generate_fine(
history_prompt["coarse_prompt"], history_prompt=history_prompt
)
base = os.path.basename(filepath)
filename, extension = os.path.splitext(base)
suffix = "_blurryhistory_"
new_filename = filename + suffix
new_filepath = os.path.join(os.path.dirname(new_filepath), new_filename + extension)
new_filepath = api.generate_unique_filepath(new_filepath)
np.savez(
new_filepath,
semantic_prompt=history_prompt["semantic_prompt"],
coarse_prompt=history_prompt["coarse_prompt"],
fine_prompt=fine_tokens,
)
quick_codec_render(new_filepath)
fine_tokens = generation.generate_fine(history_prompt["coarse_prompt"], history_prompt=None)
base = os.path.basename(filepath)
filename, extension = os.path.splitext(base)
suffix = "_blurrynohitory_"
new_filename = filename + suffix
new_filepath = os.path.join(os.path.dirname(new_filepath), new_filename + extension)
new_filepath = api.generate_unique_filepath(new_filepath)
np.savez(
new_filepath,
semantic_prompt=history_prompt["semantic_prompt"],
coarse_prompt=history_prompt["coarse_prompt"],
fine_prompt=fine_tokens,
)
quick_codec_render(new_filepath)
if gen_raw_coarse:
show_history_prompt_size(history_prompt)
new_history = resize_history_prompt(history_prompt, tokens=128, from_front=False)
# print(api.history_prompt_detailed_report(full_generation))
# show_history_prompt_size(full_generation)
# maybe cut half or something so half a speaker?
coarse_tokens = generation.generate_coarse(
history_prompt["semantic_prompt"],
history_prompt=history_prompt,
use_kv_caching=True,
)
base = os.path.basename(filepath)
filename, extension = os.path.splitext(base)
suffix = "coarse_yes_his_"
new_filename = filename + suffix
new_filepath = os.path.join(os.path.dirname(new_filepath), new_filename + extension)
new_filepath = api.generate_unique_filepath(new_filepath)
np.savez(
new_filepath,
semantic_prompt=history_prompt["semantic_prompt"],
coarse_prompt=coarse_tokens,
fine_prompt=None,
)
quick_codec_render(new_filepath)
api.history_prompt_detailed_report(history_prompt)
# maybe cut half or something so half a speaker?
coarse_tokens = generation.generate_coarse(
history_prompt["semantic_prompt"], use_kv_caching=True
)
base = os.path.basename(filepath)
filename, extension = os.path.splitext(base)
suffix = "_course_no_his_"
new_filename = filename + suffix
new_filepath = os.path.join(os.path.dirname(new_filepath), new_filename + extension)
new_filepath = api.generate_unique_filepath(new_filepath)
np.savez(
new_filepath,
semantic_prompt=history_prompt["semantic_prompt"],
coarse_prompt=coarse_tokens,
fine_prompt=None,
)
quick_codec_render(new_filepath)
# missing at least two good tokens
soft_semantic = [2, 3, 4, 5, 10, 206]
# allowed_splits = [3,4,5,10]
# somehow actually works great
def segment_these_semantics_smartly_and_smoothly(
tokens,
soft_semantic,
split_threshold=4,
minimum_segment_size=64,
maximum_segment_size=768,
maximum_segment_size_split_threshold=1,
require_consecutive_split_tokens=True,
repetition_threshold=15,
):
segments = []
segment = []
split_counter = 0
max_split_counter = 0
repetition_counter = (
1 # start at 1 as the first token is the beginning of a potential repetition
)
last_token = None
last_token_was_split = False
for token in tokens:
segment.append(token)
if (
token == last_token
): # if this token is the same as the last one, increment the repetition counter
repetition_counter += 1
else: # otherwise, reset the repetition counter
repetition_counter = 1
if token in soft_semantic:
if not require_consecutive_split_tokens or (
require_consecutive_split_tokens and last_token_was_split
):
split_counter += 1
else:
split_counter = 1
max_split_counter = 0
last_token_was_split = True
else:
max_split_counter += 1
last_token_was_split = False
if (split_counter == split_threshold or repetition_counter == repetition_threshold) and len(
segment
) >= minimum_segment_size:
segments.append(segment)
segment = []
split_counter = 0
max_split_counter = 0
repetition_counter = 1 # reset the repetition counter after a segment split
elif len(segment) > maximum_segment_size:
if (
max_split_counter == maximum_segment_size_split_threshold
or maximum_segment_size_split_threshold == 0
):
segments.append(segment[:-max_split_counter])
segment = segment[-max_split_counter:]
split_counter = 0
max_split_counter = 0
last_token = token # update last_token at the end of the loop
if segment: # don't forget to add the last segment
segments.append(segment)
return segments
def quick_clone(file):
# file_name = ".".join(file.replace("\\", "/").split("/")[-1].split(".")[:-1])
# out_file = f"data/bark_custom_speakers/{file_name}.npz"
semantic_prompt = wav_to_semantics(file)
fine_prompt = generate_fine_from_wav(file)
coarse_prompt = generate_course_history(fine_prompt)
full_generation = {
"semantic_prompt": semantic_prompt,
"coarse_prompt": coarse_prompt,
"fine_prompt": fine_prompt,
}
return full_generation
def clone_voice(
audio_filepath,
input_audio_filename_secondary,
dest_filename,
speaker_as_clone_content=None,
progress=gradio.Progress(track_tqdm=True),
max_retries=2,
even_more_clones=False,
extra_blurry_clones=False,
audio_filepath_directory=None,
simple_clones_only=False,
):
old = generation.OFFLOAD_CPU
generation.OFFLOAD_CPU = False
dest_filename = sanitize_filename(dest_filename)
timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
dir_path = Path("cloned_voices") / f"{dest_filename}_{timestamp}"
dir_path.mkdir(parents=True, exist_ok=True)
base_clone_subdir = Path(dir_path) / f"gen_0_clones"
base_clone_subdir.mkdir(parents=True, exist_ok=True)
starting_base_output_path = base_clone_subdir
starting_base_output_path = starting_base_output_path / f"{dest_filename}"
audio_filepath_files = []
if audio_filepath_directory is not None and audio_filepath_directory.strip() != "":
audio_filepath_files = os.listdir(audio_filepath_directory)
audio_filepath_files = [file for file in audio_filepath_files if file.endswith(".wav")]
audio_filepath_files = [
os.path.join(audio_filepath_directory, file) for file in audio_filepath_files
]
print(f"Found {len(audio_filepath_files)} audio files in {audio_filepath_directory}")
else:
audio_filepath_files = [audio_filepath]
for audio_num, audio_filepath in enumerate(audio_filepath_files):
if audio_filepath is None or not os.path.exists(audio_filepath):
print(f"The audio file {audio_filepath} does not exist. Please check the path.")
progress(0, f"The audio file {audio_filepath} does not exist. Please check the path.")
return
else:
print(f"Found the audio file {audio_filepath}.")
base_output_path = Path(f"{starting_base_output_path}_file{audio_num}.npz")
progress(0, desc="HuBERT Quantizer, Quantizing.")
default_prompt_width = 512
budget_prompt_width = 512
attempts = 0
orig_semantic_prompt = None
all_completed_clones = []
print(f"Cloning voice from {audio_filepath} to {dest_filename}")
if even_more_clones is True:
max_retries = 2
else:
max_retries = 1
while attempts < max_retries:
attempts += 1
# Step 1: Converting WAV to Semantics
progress(1, desc="Step 1 of 4: Converting WAV to Semantics")
print(f"attempt {attempts} of {max_retries}")
if attempts == 2:
semantic_prompt_tensor = wav_to_semantics(audio_filepath, alt_model)
else:
semantic_prompt_tensor = wav_to_semantics(audio_filepath)
orig_semantic_prompt = semantic_prompt_tensor
# semantic_prompt = semantic_prompt_tensor.numpy()
semantic_prompt = semantic_prompt_tensor
# Step 2: Generating Fine from WAV
progress(2, desc="Step 2 of 4: Generating Fine from WAV")
try:
fine_prompt = generate_fine_from_wav(audio_filepath)
except Exception as e:
print(f"Failed at step 2 with error: {e}")
continue
# Step 3: Generating Coarse History
progress(3, desc="Step 3 of 4: Generating Coarse History")
coarse_prompt = generate_course_history(fine_prompt)
# coarse_prompt = coarse_prompt.numpy()
# Building the history prompt
history_prompt = {
"semantic_prompt": semantic_prompt,
"coarse_prompt": coarse_prompt,
"fine_prompt": fine_prompt,
}
# print types of each
# print(f"semantic_prompt type: {type(semantic_prompt)}")
# print(f"coarse_prompt type: {type(coarse_prompt)}")
# print(f"fine_prompt type: {type(fine_prompt)}")
if not api.history_prompt_is_valid(history_prompt):
print("Primary prompt potentially problematic:")
print(api.history_prompt_detailed_report(history_prompt))
attempt_string = f"_{attempts}"
attempt_string = f""
if attempts == 2:
# attempt_string = f"{attempt_string}a"
attempt_string = f"_x"
output_path = base_output_path.with_stem(base_output_path.stem + attempt_string)
# full_output_path = output_path.with_stem(output_path.stem + "_FULLAUDIOCLIP")
# write_clone_npz(str(full_output_path), history_prompt)
# The back of audio is generally the best speaker by far, as the user specifically chose this audio clip and it likely has a natural ending.
# If you had to choose one the front of the clip is bit different style and decent, though cutting randomly so
# it has a high chance of being terrible.
progress(4, desc="\nSegmenting A Little More Smoothy Now...\n")
print(f"Segmenting A Little More Smoothy Now...")
full_output_path = output_path.with_stem(output_path.stem + "_FULL_LENGTH_AUDIO")
write_clone_npz(str(full_output_path), history_prompt)
full = load_npz(str(full_output_path))
# print(f"{show_history_prompt_size(full, token_samples=128)}")
# The back of clip generally the best speaker, as the user specifically chose this audio clip and it likely has a natural ending.
clip_full_semantic_length = len(semantic_prompt)
back_history_prompt = resize_history_prompt(
history_prompt, tokens=768, from_front=False
)
back_output_path = output_path.with_stem(output_path.stem + "__ENDCLIP")
write_clone_npz(
str(back_output_path), back_history_prompt, regen_fine=extra_blurry_clones
)
all_completed_clones.append(
(
back_history_prompt,
str(back_output_path),
clip_full_semantic_length - 768,
)
)
# thought this would need to be more sophisticated, maybe this is ok
split_semantic_segments = [semantic_prompt]
if not simple_clones_only:
split_semantic_segments = segment_these_semantics_smartly_and_smoothly(
semantic_prompt,
soft_semantic,
split_threshold=3,
minimum_segment_size=96,
maximum_segment_size=768,
maximum_segment_size_split_threshold=1,
require_consecutive_split_tokens=True,
repetition_threshold=9,
)
else:
print(f"Skipping smart segmentation, using single file instead.")
clone_start = 0
segment_number = 1
# while clone_end < clip_full_semantic_length + semantic_step_interval:
for idx, semantic_segment_smarter_seg in enumerate(split_semantic_segments):
semantic_segment_smarter_seg_len = len(semantic_segment_smarter_seg)
current_slice = clone_start + semantic_segment_smarter_seg_len
# segment_movement_so_far = current_slice
clone_start = current_slice
sliced_history_prompt = resize_history_prompt(
history_prompt, tokens=current_slice, from_front=True
)
sliced_history_prompt = resize_history_prompt(
sliced_history_prompt, tokens=budget_prompt_width, from_front=False
)
if api.history_prompt_is_valid(sliced_history_prompt):
# segment_output_path = output_path.with_stem(output_path.stem + f"_s_{current_slice}")
segment_output_path = output_path.with_stem(
output_path.stem + f"_{segment_number}"
)
else:
print(f"segment {segment_number} potentially problematic:")
# print(api.history_prompt_detailed_report(sliced_history_prompt))
sliced_history_prompt = resize_history_prompt(
sliced_history_prompt,
tokens=budget_prompt_width - 1,
from_front=False,
)
if api.history_prompt_is_valid(sliced_history_prompt):
# segment_output_path = output_path.with_stem(output_path.stem + f"_s_{current_slice}")
segment_output_path = output_path.with_stem(
output_path.stem + f"_{segment_number}"
)
else:
print(f"segment {segment_number} still potentially problematic:")
# print(api.history_prompt_detailed_report(sliced_history_prompt))
continue
write_clone_npz(
str(segment_output_path),
sliced_history_prompt,
regen_fine=extra_blurry_clones,
)
segment_number += 1
all_completed_clones.append(
(sliced_history_prompt, str(segment_output_path), current_slice)
)
if attempts == 1 and False:
original_audio_filepath_ext = Path(audio_filepath).suffix
copy_of_original_target_audio_file = (
dir_path / f"{dest_filename}_TARGET_ORIGINAL_audio.wav"
)
copy_of_original_target_audio_file = api.generate_unique_filepath(
str(copy_of_original_target_audio_file)
)
print(
f"Copying original clone audio sample from {audio_filepath} to {copy_of_original_target_audio_file}"
)
shutil.copyfile(audio_filepath, str(copy_of_original_target_audio_file))
progress(5, desc="Base Voice Clones Done")
print(f"Finished cloning voice from {audio_filepath} to {dest_filename}")
# TODO just an experiment, doesn't seem to help though
orig_semantic_prompt = orig_semantic_prompt.numpy()
import random
print(f"input_audio_filename_secondary: {input_audio_filename_secondary}")
if input_audio_filename_secondary is not None:
progress(5, desc="Generative Clones, Long Clip, Lots of randomness")
second_sample_prompt = None
if input_audio_filename_secondary is not None:
progress(
5,
desc="Step 5 of 5: Converting Secondary Audio sample to Semantic Prompt",
)
second_sample_tensor = wav_to_semantics(input_audio_filename_secondary)
second_sample_prompt = second_sample_tensor.numpy()
if len(second_sample_prompt) > 850:
second_sample_prompt = second_sample_prompt[
:850
] # Actually from front, makes sense
orig_semantic_prompt_len = len(orig_semantic_prompt)
generation.OFFLOAD_CPU = old
generation.preload_models()
generation.clean_models()
total_clones = len(all_completed_clones)
clone_num = 0
for clone, filepath, end_slice in all_completed_clones:
clone_num += 1
clone_history = load_npz(filepath) # lazy tensor to numpy...
progress(5, desc=f"Generating {clone_num} of {total_clones}")
if api.history_prompt_is_valid(clone_history):
end_of_prompt = end_slice + budget_prompt_width
if end_of_prompt > orig_semantic_prompt_len:
semantic_next_segment = orig_semantic_prompt # use beginning
else:
semantic_next_segment = orig_semantic_prompt[
-(orig_semantic_prompt_len - end_slice) :
]
prompts = []
if second_sample_prompt is not None:
prompts.append(second_sample_prompt)
if even_more_clones:
prompts.append(semantic_next_segment)
for semantic_next_segment in prompts:
# print(f"Shape of semantic_next_segment: {semantic_next_segment.shape}")
if len(semantic_next_segment) > 800:
semantic_next_segment = semantic_next_segment[:800]
chop1 = random.randint(32, 128)
chop2 = random.randint(64, 192)
chop3 = random.randint(128, 256)
chop_sizes = [chop1, chop2, chop3]
chop = random.choice(chop_sizes)
if chop == 0:
chop_his = None
else:
chop_his = resize_history_prompt(
clone_history, tokens=chop, from_front=False
)
coarse_tokens = api.generate_coarse(
semantic_next_segment,
history_prompt=chop_his,
temp=0.7,
silent=False,
use_kv_caching=True,
)
fine_tokens = api.generate_fine(
coarse_tokens,
history_prompt=chop_his,
temp=0.5,
)
full_generation = {
"semantic_prompt": semantic_next_segment,
"coarse_prompt": coarse_tokens,
"fine_prompt": fine_tokens,
}
if api.history_prompt_is_valid(full_generation):
base = os.path.basename(filepath)
filename, extension = os.path.splitext(base)
suffix = f"g2_{chop}_"
new_filename = filename + suffix
new_filepath = os.path.join(
os.path.dirname(filepath), new_filename + extension
)
new_filepath = api.generate_unique_filepath(new_filepath)
write_clone_npz(new_filepath, full_generation)
# messy, really bark infinity should sample from different spaces in huge npz files, no reason to cut like this.
suffix = f"g2f_{chop}_"
full_generation = resize_history_prompt(
full_generation, tokens=budget_prompt_width, from_front=True
)
new_filename = filename + suffix
new_filepath = os.path.join(
os.path.dirname(filepath), new_filename + extension
)
new_filepath = api.generate_unique_filepath(new_filepath)
write_clone_npz(new_filepath, full_generation)
tiny_history_addition = resize_history_prompt(
full_generation, tokens=128, from_front=True
)
merged = merge_history_prompts(
chop_his, tiny_history_addition, right_size=128
)
suffix = f"g2t_{chop}_"
full_generation = resize_history_prompt(
merged, tokens=budget_prompt_width, from_front=False
)
new_filename = filename + suffix
new_filepath = os.path.join(
os.path.dirname(filepath), new_filename + extension
)
new_filepath = api.generate_unique_filepath(new_filepath)
write_clone_npz(new_filepath, full_generation)
else:
print(f"Full generation for {filepath} was invalid, skipping")
print(api.history_prompt_detailed_report(full_generation))
else:
print(f"Clone {filepath} was invalid, skipping")
print(api.history_prompt_detailed_report(clone_history))
print(f"Generation 0 clones completed. You'll find your clones at: {base_clone_subdir}")
# restore previous CPU offload state
generation.OFFLOAD_CPU = old
generation.clean_models()
generation.preload_models() # ?
return f"{base_clone_subdir}"
def quick_codec_render(filepath):
reload = load_npz(filepath) # lazy
if "fine_prompt" in reload:
fine_prompt = reload["fine_prompt"]
if fine_prompt is not None and fine_prompt.shape[0] >= 8 and fine_prompt.shape[1] >= 1:
audio_arr = generation.codec_decode(fine_prompt)
base = os.path.basename(filepath)
filename, extension = os.path.splitext(base)
new_filepath = os.path.join(os.path.dirname(filepath), filename + "_f.mp4")
new_filepath = api.generate_unique_filepath(new_filepath)
api.write_audiofile(new_filepath, audio_arr, output_format="mp4")
else:
print(f"Fine prompt was invalid, skipping")
print(show_history_prompt_size(reload))
if "coarse_prompt" in reload:
coarse_prompt = reload["coarse_prompt"]
if (
coarse_prompt is not None
and coarse_prompt.ndim == 2
and coarse_prompt.shape[0] >= 2
and coarse_prompt.shape[1] >= 1
):
audio_arr = generation.codec_decode(coarse_prompt)
base = os.path.basename(filepath)
filename, extension = os.path.splitext(base)
new_filepath = os.path.join(os.path.dirname(filepath), filename + "_co.mp4")
new_filepath = api.generate_unique_filepath(new_filepath)
api.write_audiofile(new_filepath, audio_arr, output_format="mp4")
else:
print(f"Coarse prompt was invalid, skipping")
print(show_history_prompt_size(reload))
"""
def load_hubert():
HuBERTManager.make_sure_hubert_installed()
HuBERTManager.make_sure_tokenizer_installed()
if 'hubert' not in huberts:
hubert_path = './bark_infinity/hubert/hubert.pt'
print('Loading HuBERT')
huberts['hubert'] = CustomHubert(hubert_path)
if 'tokenizer' not in huberts:
tokenizer_path = './bark_infinity/hubert/tokenizer.pth'
print('Loading Custom Tokenizer')
tokenizer = CustomTokenizer()
tokenizer.load_state_dict(torch.load(tokenizer_path)) # Load the model
huberts['tokenizer'] = tokenizer
"""
huberts = {}
bark_cloning_large_model = True #
def load_hubert(alt_model=None, force_reload=True):
hubert_path = HuBERTManager.make_sure_hubert_installed()
model = (
("quantifier_V1_hubert_base_ls960_23.pth", "tokenizer_large.pth")
if bark_cloning_large_model
else ("quantifier_hubert_base_ls960_14.pth", "tokenizer.pth")
)
tokenizer_path = None
if alt_model is not None:
model = (alt_model["model"], alt_model["tokenizer_name"])
tokenizer_path = HuBERTManager.make_sure_tokenizer_installed(
model=model[0], local_file=model[1], repo=alt_model["repo"]
)
else:
tokenizer_path = HuBERTManager.make_sure_tokenizer_installed(
model=model[0], local_file=model[1]
)
if "hubert" not in huberts:
print(f"Loading HuBERT models {model} from {hubert_path}")
# huberts["hubert"] = CustomHubert(hubert_path)
huberts["hubert"] = CustomHubert(hubert_path, device=torch.device("cpu"))
if "tokenizer" not in huberts or force_reload:
# print('Loading Custom Tokenizer')
# print(f'Loading tokenizer from {tokenizer_path}')
tokenizer = CustomTokenizer.load_from_checkpoint(
tokenizer_path, map_location=torch.device("cpu")
)
huberts["tokenizer"] = tokenizer
def generate_course_history(fine_history):
return fine_history[:2, :]
# TODO don't hardcode GPU
"""
def generate_fine_from_wav(file):
model = load_codec_model(use_gpu=True) # Don't worry about reimporting, it stores the loaded model in a dict
wav, sr = torchaudio.load(file)
wav = convert_audio(wav, sr, SAMPLE_RATE, model.channels)
wav = wav.unsqueeze(0).to('cuda')
with torch.no_grad():
encoded_frames = model.encode(wav)
codes = torch.cat([encoded[0] for encoded in encoded_frames], dim=-1).squeeze()
codes = codes.cpu().numpy()
return codes
"""
clone_use_gpu = False
def generate_fine_from_wav(file):
# model = load_codec_model(use_gpu=not args.bark_use_cpu) # Don't worry about reimporting, it stores the loaded model in a dict
model = load_codec_model(
use_gpu=False
) # Don't worry about reimporting, it stores the loaded model in a dict
wav, sr = torchaudio.load(file)
wav = convert_audio(wav, sr, SAMPLE_RATE, model.channels)
wav = wav.unsqueeze(0)
# if not (args.bark_cpu_offload or args.bark_use_cpu):
if False:
wav = wav.to("cuda")
with torch.no_grad():
encoded_frames = model.encode(wav)
codes = torch.cat([encoded[0] for encoded in encoded_frames], dim=-1).squeeze()
codes = codes.cpu().numpy()
return codes
def wav_to_semantics(file, alt_model=None) -> torch.Tensor:
# Vocab size is 10,000.
if alt_model is None:
load_hubert()
else:
load_hubert(alt_model=alt_model, force_reload=True)
# check file extension and set
# format = None
# audio_extension = os.path.splitext(file)[1]
# format = audio_extension
# print(f"Loading {file} as {format}")
wav, sr = torchaudio.load(file)
# wav, sr = torchaudio.load(file, format=f"{format}")
# sr, wav = wavfile.read(file)
# wav = torch.tensor(wav, dtype=torch.float32)
if wav.shape[0] == 2: # Stereo to mono if needed
wav = wav.mean(0, keepdim=True)
# Extract semantics in HuBERT style
# print('Extracting and Tokenizing Semantics')
print("Clones Inbound...")
semantics = huberts["hubert"].forward(wav, input_sample_hz=sr)
# print('Tokenizing...')
tokens = huberts["tokenizer"].get_token(semantics)
return tokens
import copy
from collections import Counter
from contextlib import contextmanager
def load_npz(filename):
npz_data = np.load(filename, allow_pickle=True)
data_dict = {
"semantic_prompt": npz_data["semantic_prompt"],
"coarse_prompt": npz_data["coarse_prompt"],
"fine_prompt": npz_data["fine_prompt"],
}
npz_data.close()
return data_dict
def resize_history_prompt(history_prompt, tokens=128, from_front=False):
semantic_to_coarse_ratio = COARSE_RATE_HZ / SEMANTIC_RATE_HZ
semantic_prompt = history_prompt["semantic_prompt"]
coarse_prompt = history_prompt["coarse_prompt"]
fine_prompt = history_prompt["fine_prompt"]
new_semantic_len = min(tokens, len(semantic_prompt))
new_coarse_len = min(int(new_semantic_len * semantic_to_coarse_ratio), coarse_prompt.shape[1])
new_fine_len = new_coarse_len
if from_front:
new_semantic_prompt = semantic_prompt[:new_semantic_len]
new_coarse_prompt = coarse_prompt[:, :new_coarse_len]
new_fine_prompt = fine_prompt[:, :new_fine_len]
else:
new_semantic_prompt = semantic_prompt[-new_semantic_len:]
new_coarse_prompt = coarse_prompt[:, -new_coarse_len:]
new_fine_prompt = fine_prompt[:, -new_fine_len:]
return {
"semantic_prompt": new_semantic_prompt,
"coarse_prompt": new_coarse_prompt,
"fine_prompt": new_fine_prompt,
}
def show_history_prompt_size(
history_prompt, token_samples=3, semantic_back_n=128, text="history_prompt"
):
semantic_prompt = history_prompt["semantic_prompt"]
coarse_prompt = history_prompt["coarse_prompt"]
fine_prompt = history_prompt["fine_prompt"]
# compute the ratio for coarse and fine back_n
ratio = 75 / 49.9
coarse_and_fine_back_n = int(semantic_back_n * ratio)
def show_array_front_back(arr, n, back_n):
if n > 0:
front = arr[:n].tolist()
back = arr[-n:].tolist()
mid = []
if len(arr) > back_n + token_samples:
mid = arr[-back_n - token_samples : -back_n + token_samples].tolist()
if mid:
return f"{front} ... <{back_n} from end> {mid} ... {back}"
else:
return f"{front} ... {back}"
else:
return ""
def most_common_tokens(arr, n=3):
flattened = arr.flatten()
counter = Counter(flattened)
return counter.most_common(n)
print(f"\n{text}")
print(f" {text} semantic_prompt: {semantic_prompt.shape}")
print(f" Tokens: {show_array_front_back(semantic_prompt, token_samples, semantic_back_n)}")
print(f" Most common tokens: {most_common_tokens(semantic_prompt)}")
print(f" {text} coarse_prompt: {coarse_prompt.shape}")
for i, row in enumerate(coarse_prompt):
print(
f" Row {i} Tokens: {show_array_front_back(row, token_samples, coarse_and_fine_back_n)}"
)
print(f" Most common tokens in row {i}: {most_common_tokens(row)}")
print(f" {text} fine_prompt: {fine_prompt.shape}")
# for i, row in enumerate(fine_prompt):
# print(f" Row {i} Tokens: {show_array_front_back(row, token_samples, coarse_and_fine_back_n)}")
# print(f" Most common tokens in row {i}: {most_common_tokens(row)}")
def split_array_equally(array, num_parts):
split_indices = np.linspace(0, len(array), num_parts + 1, dtype=int)
return [
array[split_indices[i] : split_indices[i + 1]].astype(np.int32) for i in range(num_parts)
]
@contextmanager
def measure_time(text=None, index=None):
start_time = time.time()
yield
elapsed_time = time.time() - start_time
if index is not None and text is not None:
text = f"{text} {index}"
elif text is None:
text = "Operation"
time_finished = (
f"{text} Finished at: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))}"
)
print(f" -->{time_finished} in {elapsed_time} seconds")
def compare_history_prompts(hp1, hp2, text="history_prompt"):
print(f"\nComparing {text}")
for key in hp1.keys():
if hp1[key].shape != hp2[key].shape:
print(f" {key} arrays have different shapes: {hp1[key].shape} vs {hp2[key].shape}.")
min_size = min(hp1[key].shape[0], hp2[key].shape[0])
if hp1[key].ndim == 1:
hp1_part = hp1[key][-min_size:]
hp2_part = hp2[key][-min_size:]
else:
min_size = min(hp1[key].shape[1], hp2[key].shape[1])
hp1_part = hp1[key][:, -min_size:]
hp2_part = hp2[key][:, -min_size:]
print(f" Comparing the last {min_size} elements of each.")
else:
hp1_part = hp1[key]
hp2_part = hp2[key]
if np.array_equal(hp1_part, hp2_part):
print(f" {key} arrays are exactly the same.")
elif np.allclose(hp1_part, hp2_part):
diff = np.linalg.norm(hp1_part - hp2_part)
print(f" {key} arrays are almost equal with a norm of difference: {diff}")
else:
diff = np.linalg.norm(hp1_part - hp2_part)
print(f" {key} arrays are not equal. Norm of difference: {diff}")
def split_by_words(text, word_group_size):
words = text.split()
result = []
group = ""
for i, word in enumerate(words):
group += word + " "
if (i + 1) % word_group_size == 0:
result.append(group.strip())
group = ""
# Add the last group if it's not empty
if group.strip():
result.append(group.strip())
return result
def concat_history_prompts(history_prompt1, history_prompt2):
new_semantic_prompt = np.hstack(
[history_prompt1["semantic_prompt"], history_prompt2["semantic_prompt"]]
).astype(
np.int32
) # not int64?
new_coarse_prompt = np.hstack(
[history_prompt1["coarse_prompt"], history_prompt2["coarse_prompt"]]
).astype(np.int32)
new_fine_prompt = np.hstack(
[history_prompt1["fine_prompt"], history_prompt2["fine_prompt"]]
).astype(np.int32)
concatenated_history_prompt = {
"semantic_prompt": new_semantic_prompt,
"coarse_prompt": new_coarse_prompt,
"fine_prompt": new_fine_prompt,
}
return concatenated_history_prompt
def merge_history_prompts(left_history_prompt, right_history_prompt, right_size=128):
right_history_prompt = resize_history_prompt(
right_history_prompt, tokens=right_size, from_front=False
)
combined_history_prompts = concat_history_prompts(left_history_prompt, right_history_prompt)
combined_history_prompts = resize_history_prompt(
combined_history_prompts, tokens=341, from_front=False
)
return combined_history_prompts