Delete vgg16.py
#1
by
jamino30
- opened
vgg16.py
DELETED
@@ -1,72 +0,0 @@
|
|
1 |
-
import torch.nn as nn
|
2 |
-
import torchvision.models as models
|
3 |
-
|
4 |
-
""" VGG_16 Architecture
|
5 |
-
VGG(
|
6 |
-
(features): Sequential(
|
7 |
-
(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
8 |
-
(1): ReLU(inplace=True)
|
9 |
-
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
10 |
-
(3): ReLU(inplace=True)
|
11 |
-
(4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
|
12 |
-
(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
13 |
-
(6): ReLU(inplace=True)
|
14 |
-
(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
15 |
-
(8): ReLU(inplace=True)
|
16 |
-
(9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
|
17 |
-
(10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
18 |
-
(11): ReLU(inplace=True)
|
19 |
-
(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
20 |
-
(13): ReLU(inplace=True)
|
21 |
-
(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
22 |
-
(15): ReLU(inplace=True)
|
23 |
-
(16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
|
24 |
-
(17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
25 |
-
(18): ReLU(inplace=True)
|
26 |
-
(19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
27 |
-
(20): ReLU(inplace=True)
|
28 |
-
(21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
29 |
-
(22): ReLU(inplace=True)
|
30 |
-
(23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
|
31 |
-
(24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
32 |
-
(25): ReLU(inplace=True)
|
33 |
-
(26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
34 |
-
(27): ReLU(inplace=True)
|
35 |
-
(28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
36 |
-
(29): ReLU(inplace=True)
|
37 |
-
(30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
|
38 |
-
)
|
39 |
-
(avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
|
40 |
-
(classifier): Sequential(
|
41 |
-
(0): Linear(in_features=25088, out_features=4096, bias=True)
|
42 |
-
(1): ReLU(inplace=True)
|
43 |
-
(2): Dropout(p=0.5, inplace=False)
|
44 |
-
(3): Linear(in_features=4096, out_features=4096, bias=True)
|
45 |
-
(4): ReLU(inplace=True)
|
46 |
-
(5): Dropout(p=0.5, inplace=False)
|
47 |
-
(6): Linear(in_features=4096, out_features=1000, bias=True)
|
48 |
-
)
|
49 |
-
)
|
50 |
-
"""
|
51 |
-
|
52 |
-
class VGG_16(nn.Module):
|
53 |
-
def __init__(self):
|
54 |
-
super(VGG_16, self).__init__()
|
55 |
-
self.model = models.vgg16(weights=models.VGG16_Weights.IMAGENET1K_V1).features[:30]
|
56 |
-
|
57 |
-
for i, _ in enumerate(self.model):
|
58 |
-
if i in [4, 9, 16, 23]:
|
59 |
-
self.model[i] = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
60 |
-
|
61 |
-
def forward(self, x):
|
62 |
-
features = []
|
63 |
-
for i, layer in enumerate(self.model):
|
64 |
-
x = layer(x)
|
65 |
-
if i in [0, 5, 10, 17, 24]:
|
66 |
-
features.append(x)
|
67 |
-
return features
|
68 |
-
|
69 |
-
|
70 |
-
if __name__ == '__main__':
|
71 |
-
model = VGG_16()
|
72 |
-
print(model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|