File size: 7,488 Bytes
3c72012
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
685811f
3c72012
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57367d5
3c72012
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import gradio as gr
import torch
import spaces
import torchaudio
from whisperspeech.vq_stoks import RQBottleneckTransformer
from encodec.utils import convert_audio
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
from threading import Thread
import logging
import os
from generate_audio import (
    TTSProcessor,
)  
import uuid


device = "cuda" if torch.cuda.is_available() else "cpu"
vq_model = RQBottleneckTransformer.load_model(
        "whisper-vq-stoks-v3-7lang-fixed.model"
    ).to(device)
# tts = TTSProcessor('cpu')
use_8bit = False    
llm_path = "homebrewltd/Ichigo-llama3.1-s-instruct-v0.4"
tokenizer = AutoTokenizer.from_pretrained(llm_path)
model_kwargs = {}
if use_8bit:
    model_kwargs["quantization_config"] = BitsAndBytesConfig(
        load_in_8bit=True,
        llm_int8_enable_fp32_cpu_offload=False,
        llm_int8_has_fp16_weight=False,
    )
else:
    model_kwargs["torch_dtype"] = torch.bfloat16
model = AutoModelForCausalLM.from_pretrained(llm_path, **model_kwargs).to(device)

@spaces.GPU
def audio_to_sound_tokens_whisperspeech(audio_path):
    vq_model.ensure_whisper('cuda')
    wav, sr = torchaudio.load(audio_path)
    if sr != 16000:
        wav = torchaudio.functional.resample(wav, sr, 16000)
    with torch.no_grad():
        codes = vq_model.encode_audio(wav.to(device))
        codes = codes[0].cpu().tolist()
    
    result = ''.join(f'<|sound_{num:04d}|>' for num in codes)
    return f'<|sound_start|>{result}<|sound_end|>'

@spaces.GPU
def audio_to_sound_tokens_whisperspeech_transcribe(audio_path):
    vq_model.ensure_whisper('cuda')
    wav, sr = torchaudio.load(audio_path)
    if sr != 16000:
        wav = torchaudio.functional.resample(wav, sr, 16000)
    with torch.no_grad():
        codes = vq_model.encode_audio(wav.to(device))
        codes = codes[0].cpu().tolist()
    
    result = ''.join(f'<|sound_{num:04d}|>' for num in codes)
    return f'Transcribe the speech in this audio sample:<|sound_start|>{result}<|sound_end|>'
# print(tokenizer.encode("<|sound_0001|>", add_special_tokens=False))# return the audio tensor
# print(tokenizer.eos_token)

@spaces.GPU
def text_to_audio_file(text):
    # gen a random id for the audio file
    id = str(uuid.uuid4())
    temp_file = f"./user_audio/{id}_temp_audio.wav"
    text = text
    text_split = "_".join(text.lower().split(" "))  
    # remove the last character if it is a period
    if text_split[-1] == ".":
        text_split = text_split[:-1]
    tts = TTSProcessor("cuda")
    tts.convert_text_to_audio_file(text, temp_file)
    # logging.info(f"Saving audio to {temp_file}")
    # torchaudio.save(temp_file, audio.cpu(), sample_rate=24000)
    print(f"Saved audio to {temp_file}")
    return temp_file


@spaces.GPU
def process_input(audio_file=None):
    
    for partial_message in process_audio(audio_file):
        yield partial_message
    
        
@spaces.GPU
def process_transcribe_input(audio_file=None):
    
    for partial_message in process_audio(audio_file, transcript=True):
        yield partial_message
    
class StopOnTokens(StoppingCriteria):
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        # encode </s> token
        stop_ids = [tokenizer.eos_token_id, 128009]  # Adjust this based on your model's tokenizer
        for stop_id in stop_ids:
            if input_ids[0][-1] == stop_id:
                return True
        return False
    
@spaces.GPU
def process_audio(audio_file, transcript=False):
    if audio_file is None:
            raise ValueError("No audio file provided")

    logging.info(f"Audio file received: {audio_file}")
    logging.info(f"Audio file type: {type(audio_file)}")

    sound_tokens = audio_to_sound_tokens_whisperspeech_transcribe(audio_file)  if transcript else audio_to_sound_tokens_whisperspeech(audio_file)
    logging.info("Sound tokens generated successfully")
    # logging.info(f"audio_file: {audio_file.name}")
    messages = [
        {"role": "user", "content": sound_tokens},
    ]

    stop = StopOnTokens()
    input_str = tokenizer.apply_chat_template(messages, tokenize=False)
    input_ids = tokenizer.encode(input_str, return_tensors="pt")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)  
    generation_kwargs = dict(
        input_ids=input_ids,
        streamer=streamer,
        max_new_tokens=1024,
        do_sample=False,
        stopping_criteria=StoppingCriteriaList([stop])
    )

    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    partial_message = ""
    for new_token in streamer:
        partial_message += new_token
        if tokenizer.eos_token in partial_message:
            break
        partial_message = partial_message.replace("assistant\n\n", "")
        yield partial_message
# def stop_generation():
#     # This is a placeholder. Implement actual stopping logic here if needed.
#     return "Generation stopped.", gr.Button.update(interactive=False)
# take all the examples from the examples folder
good_examples = []
for file in os.listdir("./examples"):
    if file.endswith(".wav"):
        good_examples.append([f"./examples/{file}"])
bad_examples = []
for file in os.listdir("./bad_examples"):
    if file.endswith(".wav"):
        bad_examples.append([f"./bad_examples/{file}"])
examples = []
examples.extend(good_examples)
examples.extend(bad_examples)
with gr.Blocks() as iface:
    gr.Markdown("# Ichigo-llama3-s: Llama3.1 with listening capabilities")
    gr.Markdown("Record your voice or upload audio and send it to the model.")
    gr.Markdown("Powered by [Homebrew Ltd](https://homebrew.ltd/) | [Read our blog post](https://homebrew.ltd/blog/llama-learns-to-talk)")

    with gr.Row():
        input_type = gr.Radio(["text", "audio"], label="Input Type", value="audio")
        text_input = gr.Textbox(label="Send", visible=False)
        audio_input = gr.Audio(label="Audio", type="filepath", visible=True)
        # audio_output = gr.Audio(label="Converted Audio", type="filepath", visible=False)
    
    convert_button = gr.Button("Convert to Audio", visible=False)
    submit_button = gr.Button("Send")
    # transcrip_button = gr.Button("Make Model Transcribe the audio")
    
    text_output = gr.Textbox(label="Generated Text")
    
    def update_visibility(input_type):
        return (gr.update(visible=input_type == "text"), 
                gr.update(visible=input_type == "text"))
    def convert_and_display(text):
        audio_file = text_to_audio_file(text)
        return audio_file
    def process_example(file_path):
        return update_visibility("audio") 
    input_type.change(
        update_visibility,
        inputs=[input_type],
        outputs=[text_input, convert_button]
    )

    convert_button.click(
        convert_and_display,
        inputs=[text_input],
        outputs=[audio_input]
    )
    
    submit_button.click(
        process_input,
        inputs=[audio_input],
        outputs=[text_output]
    )
    # transcrip_button.click(
    #     process_transcribe_input,
    #     inputs=[audio_input],
    #     outputs=[text_output]
    # )
    
    gr.Examples(examples, inputs=[audio_input])
iface.queue()
iface.launch()
# launch locally
# iface.launch(server_name="0.0.0.0")