Spaces:
Runtime error
Runtime error
File size: 3,631 Bytes
639349a 9cf5830 639349a 2fc73b8 65dbb51 d1fb32e 365a7ea 0e3853b d1fb32e 639349a d1fb32e 48e001b 6f4b9a7 65dbb51 6442b57 48e001b f61aa66 639349a 48e001b 639349a 48e001b 33bb1b2 397665a 33bb1b2 639349a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
import gradio as gr
import numpy as np
import torch
from datasets import load_dataset
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
device = "cuda:0" if torch.cuda.is_available() else "cpu"
# load speech translation checkpoint
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
# load text-to-speech checkpoint and speaker embeddings
#processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
#Use own TTS Model
#processor = SpeechT5Processor.from_pretrained("jasonl1/speecht5_finetuned_voxpopuli_fi")
#processor = SpeechT5Processor.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl")
processor = SpeechT5Processor.from_pretrained("Salama1429/TTS_German_Speecht5_finetuned_voxpopuli_nl")
# Load model directly
model = SpeechT5ForTextToSpeech.from_pretrained("Salama1429/TTS_German_Speecht5_finetuned_voxpopuli_nl")
#model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
#Use own TTS Model
#model = SpeechT5ForTextToSpeech.from_pretrained("jasonl1/speecht5_finetuned_voxpopuli_fi",ignore_mismatched_sizes=True,)
#model = SpeechT5ForTextToSpeech.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl")
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
#def translate(audio):
# outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
# return outputs["text"]
# Added to Base to translate from Language X to any Language Y ="fi" using "task": "transcribe"
# At Inference. it should use translate(sample["audio"].copy())
def translate(audio):
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "de"})
return outputs["text"]
def synthesise(text):
inputs = processor(text=text, return_tensors="pt")
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
return speech.cpu()
def speech_to_speech_translation(audio):
translated_text = translate(audio)
synthesised_speech = synthesise(translated_text)
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
return 16000, synthesised_speech
title = "Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""
demo = gr.Blocks()
mic_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
title=title,
description=description,
)
file_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="upload", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
examples=[["./example.wav"]],
title=title,
description=description,
)
with demo:
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
demo.launch()
|