File size: 3,850 Bytes
45bea6f
 
 
f892d4a
45bea6f
f892d4a
 
45bea6f
 
d1eabfd
 
 
 
 
 
 
 
 
 
 
45bea6f
 
 
d1eabfd
 
 
 
d0b932a
45bea6f
 
 
d1eabfd
 
 
 
d0b932a
45bea6f
 
78249bc
 
 
d0b932a
d1eabfd
d0b932a
 
 
 
45bea6f
d1eabfd
 
45bea6f
b7c8c25
45bea6f
 
 
 
 
 
 
 
b7bf69e
b7c8c25
45bea6f
 
 
 
 
 
d0b932a
 
78249bc
45bea6f
 
 
 
 
d1eabfd
45bea6f
 
 
 
 
 
 
 
 
 
 
 
a3b0b89
 
 
45bea6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7c8c25
45bea6f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import gradio as gr
import numpy as np
import random
from diffusers import PixArtAlphaPipeline, Transformer2DModel, LCMScheduler
import torch
from peft import PeftModel


device = "cuda" if torch.cuda.is_available() else "cpu"

transformer = Transformer2DModel.from_pretrained(
  "PixArt-alpha/PixArt-XL-2-1024-MS",
  subfolder="transformer",
  torch_dtype=torch.float16
)
transformer = PeftModel.from_pretrained(
  transformer,
  "jasperai/flash-pixart"
)


if torch.cuda.is_available():
    torch.cuda.max_memory_allocated(device=device)
    pipe = PixArtAlphaPipeline.from_pretrained(
      "PixArt-alpha/PixArt-XL-2-1024-MS",
      transformer=transformer,
      torch_dtype=torch.float16
    )
    pipe.enable_xformers_memory_efficient_attention()
    pipe = pipe.to(device)
else: 
    pipe = PixArtAlphaPipeline.from_pretrained(
      "PixArt-alpha/PixArt-XL-2-1024-MS",
      transformer=transformer,
      torch_dtype=torch.float16
    )
    pipe = pipe.to(device)

pipe.text_encoder.to_bettertransformer()
pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=True)

pipe.scheduler = LCMScheduler.from_pretrained(
    "PixArt-alpha/PixArt-XL-2-1024-MS",
    subfolder="scheduler",
    timestep_spacing="trailing",
)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
NUM_INFERENCE_STEPS = 4

def infer(prompt, seed, randomize_seed):

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
        
    generator = torch.Generator().manual_seed(seed)
    
    image = pipe(
        prompt = prompt, 
        guidance_scale = 0, 
        num_inference_steps = NUM_INFERENCE_STEPS, 
        generator = generator
    ).images[0] 
    
    return image

examples = [
    "The image showcases a freshly baked bread, possibly focaccia, with rosemary sprigs and red pepper flakes sprinkled on top. It's sliced and placed on a wire cooling rack, with a bowl of mixed peppercorns beside it.",
    "A raccoon reading a book in a lush forest.",
    "A small cactus with a happy face in the Sahara desert.",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 512px;
}
"""

if torch.cuda.is_available():
    power_device = "GPU"
else:
    power_device = "CPU"

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # ⚡ FlashDiffusion: FlashPixart ⚡
        This is an interactive demo of [Flash Diffusion](https://huggingface.co/jasperai/flash-pixart), a diffusion distillation method proposed in [ADD ARXIV]() *by Clément Chadebec, Onur Tasar and Benjamin Aubin.*
        This model is a **66.5M** LoRA distilled version of [Pixart-α](https://huggingface.co/PixArt-alpha/PixArt-XL-2-1024-MS) model that is able to generate 1024x1024 images in **4 steps**. 
        Currently running on {power_device}.
        """)
        
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
        
        gr.Examples(
            examples = examples,
            inputs = [prompt]
        )

    run_button.click(
        fn = infer,
        inputs = [prompt, seed, randomize_seed],
        outputs = [result]
    )

demo.queue().launch()